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Abstract

Research in multiscale methods has recently flourished with the help of ever-
improving computer technology. These developments enable computational
physics methods to challenge many of the fundamental limitations of continuum
mechanics with larger atomistic simulations and sophisticated hybrid atomistic-
continuum methods. The foundation of most hybrid methods presently lies in
the judicious application of kinematic constraints between regions of atoms and
regions of continuum finite elements. This juxtaposes atomic and continuum
force fields and introduces an interface along which atoms and nodes are
unnaturally constrained. The constraint is necessary to establish compatibility of
displacements across the interface. This report is divided into three sections.
Section 1 reports on an investigation of finding sources of numerical error due to
this unphysical constraint. Bounding estimates on the numerical error are
derived using summation rules of a classical interatomic potential and the
geometry and periodicity of the molecular structure. A previously observed
inverse relation between element size and interface error is demonstrated, and
additional numerical experiments are presented. In section 2, a literature review
of a technique that can potentially eliminate this error is presented. The review
covers efforts in engineering for composite materials rooted in a firm
mathematical basis for the so-called asymptotic expansion homogenization
method (AEH). The homogenization method is used as a framework for
developing a multiscale system of equations in elasticity, also in section 2. In
section 3, AEH is used as a framework for developing analytical multiscale
formulations for frozen atoms at the small scale and continuum mechanics at the
large scale.  The Tersoff-Brenner type II potential (Brenner, D. W.
Physical Review B. Vol. 42, no. 15, pp. 9458-9471, 1990; Tersoff, J. Physical Review
Letters. Vol. 61, no. 25, pp. 2879-2882, 1988) governs the atom interactions, and
hyperelasticity governs the continuum. A quasi-static assumption is used
together with the Cauchy-Born approximation to enforce the gross deformation
of the continuum on the positions of the atoms. This makes the atomistic
equations linear. The two-scale homogenization method establishes coupled
self-consistent variational equations in which the information at the atomistic
scale, formulated in terms of the Lagrangian stiffness tensor, feeds the material
information to the continuum equations. Analytical results in one dimension are

shown.
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1. Estimating Numerical Error in
Atomistic-Continuum Computational

‘Methods in Graphene

1.1 Overview

The underlying premise of the finite element method (FEM), when applied to solving prob-
lems in computational mechanics, is that the material in question is a continuous medium
infinitely divisible into smaller continuous components. Developments in the basic sciences
such as chemistry and physics, however, have disputed this assumption long before the no-
tion of FE was even first conceived. In most applications at macroscopic length scales, it is
useful to think of materials as a system of continuously distributed mass. Yet today, with the
development of advanced devices such as nano-/microelectromechanical systems (N/MEMS)
whose features and characteristics challenge the most fundamental assumptions of contin-
uum mechanics, it is clear that traditional FEM cannot be applied without additional con-
siderations. Moreover, the numbers of atoms in these devices warrant the determination of

properties that require computations on a scale unreachable by atomistic methods alone.

Methodologies for linking a continuum to an atomistic domain can be found in the litera-
ture as early 1971 [1] in which the treatment of the continuum is predominantly atomistic
in nature. Finite element methods were later employed by Mullins and Dokainish [2] using
a numerically decoupled domain approach with spatially overlapping atomistic and contin-
uum regions in which the information from each region is fed into the other via boundary
conditions. A review of these methods can be found in Cleri et al. [3]. Among these early

analytic and computational studies, frequent issues regarding the treatment of the interface




arose which were primarily handled through creative use of kinematic constraints.

More recently Tadmor et al. [4] develop an entirely FE-based formulation, the so-called
quasicontinuum method. Local and non-local formulations are used to discriminate between
atoms in regions of low interest and high interest. The transition between the two regions is

handled again through kinematic constraints and the mesh is adaptively refined in regions

of large atom motion.

The so-called handshaking or coupling of length scales (CLS) method [5] adds an additional
level of sophistication with a third region modeled using the tight-binding (TB) method
which captures information about the electronic degrees of freedom. There are three regions
of interest: (1) an FE region modeled using elasticity theory, (2) a molecular dynamics (MD)
region using a classical potential, and (3) the TB region.' The coupling at interfaces sepa-
rating these regions is accomplished through kinematic constraints at the FE/MD interface

and chemical constraints at the MD/TB interface.

A generalized scaling approach is developed in coarse-grained molecular dynamics (CGMD)
[6] to better handle the propagation of waves through the atomistic-FE interface and the FE
far field. A coarse graining procedure is used to “merge” the atomistic degrees of freedom

from Hamilton’s equations of motion to the smaller number of FE nodal degrees of freedom.

The common theme in the previously mentioned investigations is to directly connect a con-
tinuum region to an atomistic region either through kinematic or statistical constraints. The
benefit of these types of approaches is the removal of complexity in regions of the domain
where detailed atomic resolution is unnecessary by replacing a large number of atomic de-

grees of freedom with a smaller number of element/nodal degrees of freedom. This type of

approach, however, does not ensure compatibility at the interface and, as a result, so-called

“ghost forces” may occur [7].




Friesecke and James [8], as part of an investigation to derive a scheme that passes an atomistic
energy to a continuum energy, showed that the sum of the energies of in the elements is
greater than (less negative) the total energy of the original body before discretization. In
fact, the difference between the sum and total energies is proportional to O(1/h). This
provides an indirect explanation for the ghost forces. The point of departure in this work is
in the explicit calculation of the energy error based on geometry arguments of the molecular

structure of the material.

There are two primary ways of classifying the forces: those due to the initial discretization
or modeling error and those due to subsequent deformations of the mesh that stem from the
discretization. The aim of this section of the report is to quantify the first type of error in
terms of energy and to specify their origins from a classical potential. We will only briefly

discuss the second.

In practice, creative constraints have been applied near the interface region using transition
schemes to reduce the error [2,7]. However, a systematic means of approximating this error
is still unavailable. The objective of this section is, therefore, to make a first step in this
direction by developing an approach where this error can be estimated directly from the
classical potential and the structure of the molecular geometry. This has application to
problems where the mechanical state of the system depends on the total energy. Examples
may include problems of phase transition and local material instability. The present potential
is specifically suited for semiconductor lattices with a two-atom basis, namely carbon, and

accounts for two- and three-atom effects [9].

In section 1.2, some preliminary definitions are given; in section 1.3, a discussion of the
sources of numerical error in atomistic-continuum computational schemes is presented. In
section 1.4, a description of the actual classical potential used in the present calculations
is described followed by estimates of the energy error and discussions of the results. Some

additional considerations for more general studies will then be presented in section 1.5,




followed by final remarks in section 1.6.

1.2 Problem Definition

Consider a lattice of periodically spaced atoms in the n-dimensional space 2 € R* with
n, atoms and n, bonds connecting the nearest neighbor atoms. The atoms are initially
undistorted and at zero temperature. The plane of atoms can be fully described by a set of
primitive cell vectors (e;) and additional translation vectors (p;) if there is more than one
atom in each basis cell. For carbon in the form of a single graphite sheet, graphene, there

are two atoms in the basis (7 = 1) and therefore only one translation vector.

The sheet of atoms is permitted to deform. The deformation is measured by the deformation
gradient F. Let the deformation u : @ — R* with gradient F = %‘% have an energy density

given in the general form

w==3 8, (1)

where b runs over all the bonds (n;) in 2, and the nl—: coefficient gives the energy density per
atom. Assume that ® is defined for all F that are real 2 x 2 matrices with det F > 0 and

that ® exhibits the standard features of lattice invariant deformations in 2.

The energy density expression can take any general form of a cluster potential. Therefore,
the summation can involve bonds, bond angles, and higher bond-order effects. A specific

case study is made in section 1.4 which requires a more exact description for the potential.

However, the discussions here are generally applicable for any classical potential.

For the sake of discussion, assume that the energy in equation (1) can be decomposed into

the sum of an energy due to a deformation and a non-zero reference equilibrium energy. The




reference equilibrium energy is based on the initial positions of the atom nuclei, X, i.e.,

W= 3 6 (F) + - D6 (%), 2
e p L)
where
¢p(F =1) =0. (3)

Through a change of variables, equation (2) can be rewritten as a function of the atom

displacements,
1 ng 1 ny
W=—=3 6 (F)+—> &X). (4)
a b a b

The assumption that the energy is separable in equation (2) is nontrivial. In generaﬂ classical
potentials, the ansatz is highly nonlinear and behaves poorly in the traditional partial dif-
ferential equation sense. It possesses at least one singularity, is nonconvex and noncoercive.
The simplification introduced in equation (2) will be justified next through a bilinearization

of the problem that removes this difficulty at the expense of generality.

In light of the small deformation assumption, we can take a bilinearization (harmonic ap-
proximation) about the equilibrium lattice configuration. This involves taking the Taylor
series expansion of the energyv as follows,

ow ) 1 T *W
W—W|F=I+—8‘Fle.(F—I)"l—-Q-(F—I) ' 3FOF

When the system is in equilibrium, the first derivative is zero. Omitting higher order terms,

CF-D+--- . (5

this leaves

1 r W .
W—W|F=I+—2-(F—I) ' SFOF F=I.(F—I). (6)
By definition,
F-I=Vu (7)




Substituting equation (7) into equation (6) gives

1

8°W
2 " OFOF |p_, (®)

: (Vu).

Notice that the reference equilibrium energy occurs naturally in the expansion. This justifies

the earlier assumption of decomposability.

As a consequence of the small deformation assumption and the resulting harmonicity in W,

we can assume u € H!. Or more conventionally, one can say u € S for a given set of

conditions of u on 2, where
S = {uju € H, uq, =i} (9)

Furthermore, define ¥V C S such that
V ={wlw € H', wlg, =0}. (10)

Then, for a given set of prescribed displacements @ on the boundary €2,, the stable configu-

ration of the atoms is one which minimizes the total potential energy

() = inf [/QWdQ—/Qf»de—/Q f-vdFJ, (11)

where v € S are the trial functions, f is the body force per unit volume and t is the prescribed
surface tractions per unit area on £2,. Substituting equation (8) into equation (11) gives,

oW : :(V‘,)_/Qf.vdg_/Q t-vdI‘}. (12)

s 1 T,
II(u) - 1T, = inf [/92(vv) el

Associated with equation (12) is a bilinear symmetric form a(-,-) and inner products (-,-)

and (-, -)r where
PwW

a(w,u) = /Q(VW): AFGF |,_, : (Vu)dQ, (13)

(f,u) = / £ ud, (14)
Q

(t,u)r = /Q ¢ - udr. (15)

6




Then, the functional in equation (12) has the form,

M(u) — I, = inf Ba(v,v) ~ (V) — (&), (16)

v
with the equivalent weak form of equation (16) given by: Find u € S for every w € V such

that

a(w,u) = (w,f) + (w,t)r. (17)

The finite element analogue of (17) is based on the conventional discretization of displace-

ments and corresponding gradients,

Ne
u = zwiui, (18)
i

Vuh = ZBi’U,i, (19)

where ¢ = 1, ..., n. are the nodes in the mesh, w; are the weighting functions, and B; are the
gradients of the weighting functions. The finite dimensional approximations of S and V are

denoted by S"* and V", where S* ¢ S and V" C V.

1.3 Discretization Error

Classical potentials, such as empirical interatomic potentials, are phenomenological in nature
and do not explicitly model the effects of the electron density. However, tests have shown that
in studying strain energies, particularly in the context of mechanical deformation, classical
potentials give equally reliable results compared to ab initio calculations (Figure 1) for
homogeneous deformation under the present assumption of small strains (<10%). Despite
the myriad sources of error that can stem ostensibly from the use of a classical potential,
the aim of this work is to study the error that arises due to the introduction of the finite

element discretization.
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Figure 1. Deformation energy density comparisons for homogeneous stretch-
ing of graphene in the plane. Smooth line denotes the classical

potential and dots denote computed ab initio values.

The internal energy must now be expressed in an approximate finite element form. Discretize

Q2 with a set of elements f such that

o= s, (20)
which has the associated minimization problem given by
M (u") -t = inf [%ah(vh,vh) — (f,vM)" — (4, vh){f:l , (21)
where
PPwh
hiwh 1ih h rY JOR
= : : (Vu*)dQ2 22
what) = [ (VW) SR (e (22)
(f,ut)* = f-uhdQ”, (23)
Qh
(t,u")k = / t - utdl™”. (24)
Qg
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As in equation (17), the associated weak form is given as: Find u® € 8" for every w" € V"

such that

ah(wh uh) = (wh )" + (W, t)}. (25)

It remains to more carefully define the bilinear form a”(-,-). From equation (4), the internal

energy is written, as a consequence of the discretization, as

W= L3S e mw+ 2305600 (20

where h runs over all the elements and b runs over all the bonds within the element, nj.

Then, define u® € S* as the solution that satisfies equation (25) for W" given by

e

Wu%im<w+—zz% @)

subject to the prescribed loads and displacements on the boundary.

The driving motivation of atomistic-continuum problems is the reduction of the number of
degrees of freedom. However, through the introduction of the finite element approximation,
two sources of ghost forces arise. Notice that these can now be elucidated from equations
(4), (16), (21), and (27). The first of these will be described briefly here. The second will
be expounded in section 1.5. The first occurs at initial equilibrium, i.e., u = 0, where the
difference in total potential energies between exact and approximate is the difference in the
reference lattice energies. Let the lattice of all bonds in 2 be denoted £, and those in Q" be

denoted L}'. Then, the energy difference is given by
n-I = I, I
_ ify;g( —aiz¢° 28
= Z #(X

bE{Eb\Ch}

9




where b runs over all bonds that cut across element boundaries, i.e., all bonds that connect
atoms in two different elements. The discretization of 2 leads to a set of disjoint sets of atoms
that causes the two terms in equation (28) to be unequal generally. The only instance when

they are equivalent is when n, = 1 and n, = n¢, or when £,\L} € § and no discretization is

performed.

Equation (28) is an equilibrium energy form of the ghost force error and is due to a more pre-
dominant assumption that stems from a discretization error as evidenced by the summation
being over all bonds excluded in the meshing. Bond-counting arguments and summation

rules can then be used to characterize and quantify this error near the interface.

There are two observations from the energy difference in equation (28). First, it is nonzero
at equilibrium. Approximating Q with Q artificially introduces internal surfaces into the

problem, effectively truncating the communication among the atoms (Figure 2).

Although this effect grows asymptotically smaller for very large elements (relative to atom
spacings), the error is more pronounced as the element size becomes comparable to atom
spacings. This situation occurs frequently in atomistic-continuum computational methods
due to the kinematic constraints needed to enforce local compatibility between the atoms
and the elements. Second, at small scales equation (28) is neither translation nor rotation
invariant, a characteristic of isotropic continua, because of mesh-dependence at small scales.
Figure 3 illustrates this by showing that the energy in element A is unequal to the energy in
element B despite both elements having the same perimeter and areas. This is the nature of

discretizing a problem that contains an already discrete set of atoms.

10




(a) Original graphene sheet with (b) Fragment of an unstructured fi-
bonds denoted by straight lines and nite element mesh used to approximate
C-atoms denoted by black dots. atomic degrees of freedom with nodes

(open circles).

Figure 2. Element boundaries act as truncation lines that cut off the com-
munication among atoms in different elements. The result is the

artificial increase in the total energy.

1.4 Example: Graphene

We now attempt to quantify the error for the specific example of graphene using the
Stillinger-Weber classical potential given by Stillinger and Weber [9] and Abraham and
Batra [10]. It has been documented to give reliable lattice binding energy and atom spacing

for graphite. The energy is given by
W=3"% () +y >, > ¥ (rw)’ r(ik)> X (ran) x (rew) (29)
i J i g k
i<j i i#I#k
where ¢ and ¢ are the respective two- and three-atom terms, x is the short-range cut-off

function, (i, 7, k) are atom indices, and the density is retrieved by dividing by the number

of atoms W = W/n,. The two- and three-atom potentials and cut-off function are given

11




Figure 3. The total energies of elements A and B are not equivalent.

respectively by

A(Brg}, — Dexp [(rap —a)™'] , 7<a

0 , r>a
2
rajy T
¢(r(ij)71‘(ik)) = €A @) COS(9*)] ) (31)
T(ig)  T(ik)
exp [Y(rap—a)7t] , r<a
X(T(z'j)) = [ Y ) (32)
0 , T>a

where A, B, a, ), ., are material-specific constants, and the symbol r;;; denotes the vector
originating from atom i and terminating at atom j. This material was chosen specifically
because of its covalency as a semiconductor and the absence of significant long-range forces.

For graphene, only short-range, nearest-neighbor forces need to be considered.

We introduce a local coordinate system centered on the graphene primitive cell. Any straight
line that passes through the cell can be exactly defined by the set (e, 8.). Figure 4 depicts
a straight line cutting through the primitive cell and the associated local coordinate system.
The straight line is an idealization of an element boundary cutting through the atomistic
region. It represents the line across which atoms are not permitted to “communicate.” Aé

a heuristic upper bound on the magnitude of the error, (e.,8.) can be permuted so that the

12



Figure 4. Local coordinate system and cutting line that represents fictitious

element boundary.

line cuts through the largest number of bonds per unit length. This corresponds to the set
(ee,8e) = (ge2,0) for 3 < g < % The symmetry of the hexagonal rings also implies there are

six rotations that give equivalent results.

The interesting result here is the upper bound. Each bond has an energy equal to the pair
potential value of ¢ for the undeformed nearest neighbor atom spacing of 7,. For the (e, fe)
upper bound parameters previously given on a periodic cell, two bonds are cut per roV/3

distance. Therefore, the energy error density per unit area of the graphene sheet is

1 26
n-mnm=c=, <.
h V3

Through numerical experiments, the efficacy of this upper bound can be tested for increasing

(33)

element sizes. Figure 5 shows several example calculations for varying e, and 6.. The
data sets marked ), 65, 63, 0. 65 respectively denote (e.,8.) = (3e2,0), (e2,0), (3€2, %),
(%62, %) (%62, 2), and (%eg, 0). The scatter at smaller element sizes shows the breakdown
of rotational and translational invariance near the atomistic region as previously discussed.
The scatter is also attributed in part to the imprecise measure of bond density when only
a few bonds are involved at very small element sizes. Notice that the magnitude of the
error for small A is as high as 3 eV/A with a mean value of approximately 2.2 eV/A. The
equilibrium interatomic distance in graphene is approximately 1.42 A. The standard lattice
binding energy is —7.44 e\’ per carbon atom. Then, in the extreme case where there is

poor mesh selection, the energy error can exceed 4 eV/atom. For larger element sizes, the
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Figure 5. Numerical tests on the discretization error (|W"| = C).

coefficient of the error approaches a continuum limit where invariance sets in, and the error

of the total energy density is even smaller due to the inverse dependence on h.

A lower bound can be generated likewise by choosing the best approximating scenario of the
fictitious element boundary. If we assume that any line that cuts directly through an atom
affects neither the atom nor the bonds emanating from it, then the lower bound is always

zero since a line can always be oriented in a periodic graphite lattice to cut only through a

line of atoms. An example of this is the set (e.,f.) = (gez,0) for ¢ = % or 2. Specifically,

the coefficient is found to be

o> 2 (T ri) (34)
- 31,
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This calculation suggests that refinement is not always desirable to atomic scales when
employing finite element methods, an observation that is counterintuitive to conventional
h-adaptive methods. A means of systematically correcting these effects is still currently

unavailable.

1.5 Nontrivial Deformation

The second source of ghost forces comes from the first terms in equations (4) and (27), i.e.,

amw) ~a ") = Y6 (P) - D Gu(F(u) (35)
%Y
- /Q (V)¢ S|+ (Va0
2 h
— /Q h(Vuh): gF);VF - s (Vuh)dQh. (36)

Despite the common expansions about F =1 in both integrals in equation (36), the La-
grangian stiffness terms are still unequal because of the differences in the implied summa-
tions over the requisite atoms (and/or bonds). More precisely, the number of bonds that are
counted in W is unequal to the number in W". Thus, standard numerical analysis techniques

cannot be applied directly without significant modification.

In the limit as h = oc and 7, — 0, it has been shown that this atomistic error exhibits a
boundedness proportional again to O (%) [8]. Furthermore, under these assumptions, one
can show that the stiffness terms are equivalent in the limit, and the convergence rate of
equation (36), the square of the energy norm, is bounded by some function of the element

size h. Or in standard notation
llelln < ch* " ]al|x41, (37)

where e = u” — u, c is some independent constant, k is the complete order of the piecewise

smooth polynomial used in the interpolation and n is the order of the derivative in the
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energy expression, i.e., the appropriate metric space. For continua, these types of rigorous
estimates are well established [11). However, for problems involving resolvable atomic details
relative to finite element size, the precise magnitudes of error have not yet been ascertained
in a generalized way as in continua. Such developments are potentially useful for error

estimator/corrector schemes for implementation into existing computational methods.

Under limited distortions, however, simple estimates as in section 1.4 can again be obtained
for deformed configurations. We presently consider the case where the in-plane shearing de-
formation of the atoms coheres to the Cauchy-Born rule [12]. Furthermore, the deformations
are limited to the class of all uniform shears in which the coordination number of the atoms
stays fixed. That is, the interatomic spacings do not change so that new bonds do not form

and existing bonds do not break. The shear is characterized by the deformation gradient

where, based on the cut-off function in equations (29) and (32), and all relevant material
parameters for carbon, we choose 0 < & < 0.0617. The deformed configuration of graphene
is depicted in Figure 6. Under homogeneous deformation, the three vectors a, b, and c are
the only vectors needed to describe the bond orientations and lengths in the entire sheet by

appropriately tiling the plane. The Cartesian components of the deformed bonds are given

by
% (Vi-a) ~% (Vi+a)
a= o |, b= — , €= -2 . (39)
0 0 0

The restriction on o makes this a first order approximation. Pair interactions dominate

over the higher order triple terms in equation (29). Using the earlier arguments for the
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Figure 6. Homogeneous shear of graphene.

undeformed configuration, the UB and LB estimates for the error coeflicients are

cvs = 1 [¢(a) + ¢(b) + 2¢(a, b) + 2¢(a, c) + 2¢(b, c)],
T‘lU (40)
C™® = = [24(a, ) + 24(a, b)), '
L
where
ry = 32‘3 12 — 6v3a +9a2, 1, =3r,, (41)

and a = |a] and b = |b|.

The change in the error estimates are shown vs. the extent of deformation in Figure 7. The
variations are in the meV range. Further considerations must be undertaken to evaluate
the error under larger deformations where changes in coordination and higher order atom

interactions occur.

1.6 Closing Remarks

The area of computational multiscale method development remains a fertile area of research.
It attempts to answer many of the most difficult questions of science at the nanoscale by

leveraging the understanding of continua. In this report, we have proposed a first order
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characterization of the energy error in undeformed and limited deformed configurations of
graphene using classical energy expressions. In the present carbon system where the force
field is dominated by pairwise interactions of atoms, the findings show that the error in-

troduced by discretization may lead to significant errors in the energy under certain mesh

refinements.
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2. A Literature Review of the Asymptotic

Expansion Homogenization Method

The first part of section 2 briefly describes several key developments in homogenization.
Their deficiencies in being unable to provide local information motivates the subsequent dis-
cussion of the so-called asymptotic expansion homogenization (AEH) approach. In section
2.2, various types of related and available homogenization methods are described that pos-
sess the homogenization/localization capability to handle complex linear/nonlinear behavior
encountered in continuum and phenomenological engineering problems. Section 2.3 intro-
duces the mathematical literature from which AEH finds its basis. Other names found in
the literature for this approach include asymptotic homogenization, mathematical homoge-
nization, and classical homogenization. All are based on the fundamental premise that the
displacement, velocity, or temperature field is representable by an asymptotic series. 'To
avoid confusion, the method will be referred to as AEH, whereas classical homogenization
techniques will refer to homogenization methods based on classical mechanics principles. In
section 2.4, application-oriented efforts for AEH for linear problems are summarized. Sec-
tions 2.5 and 2.6 describe inelastic and nonlinear problems in the AEH literature. The
method is completely demonstrated for a linear elastic example in section 2.7. And final

conclusions are drawn from the literature review in section 2.8.

2.1 Classical Homogenization Methods and the Intro-

duction of AEH

Early efforts in finding the effective properties of composite materials frequently approached

the problem from a mathematical point of view to predict bounds on properties [13-16]. The
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simple geometries of spherical or cylindrical inclusions permitted the use of simplified ana-
lytical methods. Though these investigations reveal much about the mechanics of composite
materials, assumptions on the geométry of the microstructure and ordering of constituent
properties pose limitations on their applicability to advanced high performance composites

with complex microstructures.

Recent composite technologies, such as sophisticated woven fabric composites, employ com-
plex patterns in the weaving of reinforcement fibers. Thus, bounds or other approximations
of the effective properties that were originally designed for simple microstructures such as
regular arrays of uniform cylinders or uniformly distributed spheres, are inappropriate. The
same difficulties exist in predicting other constitutive properties such as conductivity, per-
meability, diffusivity, thermal expansion, and the like. Furthermore, though a repeating cell
may still be identifiable and assumed small, the assemblage of cells within the true global
body may not exhibit homogeneity in the necessary statistical sense [17] making the direct

application of analytical techniques difficult.

To incorporate the details of the weaving patterns of the bundled fibers and the depen-
dence of microstructural parameters on the macro properties, some researchers have used
laminated plate analytical continuum methods [18-23]. By varying the boundary conditions
applied according to displacements or tractions consistent with the theorems of minimum
potential and complementary energies, bounds for the effective plate stiffness and compliance
were obtained. Unfortunately, these methods are either inherently one dimensional (1-D) or
two dimensional (2-D) or are restricted to simple microstructures. They employ the so-called
mosaic or crimp approximations for the woven fabric geometry that allows them to construct
analytical expressions for the fiber shape and, consequently, the constitutive equations. As
such, they do not provide insight into the three-dimensional (3-D) physics associated with
advanced composites, particularly when the fibers are not in the shape of simple trigono-

metric functions or when complex boundary interactions dominate the internal behavior of

the material.
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Other efforts appear in the form of mechanics-of-materials approaches within the framework
of numerical methods for determining the homogenized properties [24-28]. These approaches
are useful for complex 3-D microstructures. They typically require some external boundary
conditions to be applied to the unit cell from which an understanding of the response of
the structure is obtained by comparisons with Hooke’s Law or energy balance principles.
Averaging operations of the phenomenological models over the unit cell, referred to as ho-
mogenization, vield the homogenized properties. Details of the unit cell are smeared away
in favor of a single set of properties that characterizes the inhomogeneous material in an
average sense. The mechanics-of-materials approaches perform homogenization for arbitrar-
ily shaped microstructural features. The AEH approach, on the other hand, can handle
arbitrary shapes but also enables one to return to the microlevel details in the unit cell (i.e.,
localization) based on the global solution. Whereas the mechanics-of-materials approaches
provide homogenized properties, the AEH approach provides homogenized properties as well

as localized information.

As composite manufacturing techniques grow in sophistication, so too does the demand for
computational and analysis methods for predicting and modeling the manufacturing proceés.
A step in this direction is computational approaches that handle the important multiscale
issues typically associated with heterogeneous materials. Among the approaches discussed
in this study, the AEH method appears viable and useful for determining the effective prop-
erties of composites and employving the computed properties in subsequent macrolevel anal-
yses. The approach is predicated on two fundamental assumptions: that the displacements
(or other primary variable such as temperature or flow velocity) can be characterized by an
asymbtotic series in ¢ and that the salient features of the microstructure are contained in a
unit cell representative of the periodicity at the local scale. The first two terms of the series
are assumed to be representative of the respective macro and micro responses (see Figure
8). These definitive macro and micro terms, then, subject to the periodicity constraints,
provide tangible variables from which to extract local effective micromechanical properties,

local gradients, and the overall global response. The approach can also be extended to ther-
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Figure 8. The body in e-space is the realistic representation of the heteroge-
neous structure. The AEH approach isolates the micro from the
macro by approximating £ with an homogenized body in X and a

scaled representative unit cell in Y.

mal, flow or structural continuum problems. Its large range of computational applications

indicates its generality for a broad class of boundary value problems (BVP).

The AEH approach has also been studied in the context of problems involving three or
more scales [29] by using a reiterative scheme. By applying two-scale AEH successively

over multiple length scales, the AEH approach can be extended to problems involving three
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or more length scales with little modification to existing formulations. The approach has
been studied mathematically for linear heat conduction by Bensoussan et al. [29] and in

engineering analysis for linear elasticity in Chang and Kikuchi [30].

The multiple scale abilities notwithstanding, the AEH approach can also be used as an
approach only to estimate the homogenized properties. By deriving partial differential equa-
tions (PDEs) that govern the influence of inhomogeneities, no restrictions are placed on the
size or complexity of shapes of the microstructure. The only limitation, therefore, is the
significant preprocessing modeling effort needed to create the complex geometries associated
with modern composites. Thus the same approach may be applied in a generalized manner

to woven fabric composites, knit-fiber composites, metal matrix composites, and the like.

Researchers have also found AEH more apt for extension to the inelastic regime due to its
ability to estimate microlevel information and continually update the homogenized macrolevel
properties. With the localization capability inherently derivable through the formulations,
microlevel information such as yield criteria or other nonlinear effects and state variables

can be updated.

With the estimated information at the local level, global effects can then be estimated by
re-homogenization based on the new local information. The new global information, then,
influences the global homogenized problem in a circuitous manner [31-34]. Other popular
homogenization approaches [13-28] do not permit the estimation of micro- and macrolevel
information simultaneously. This key distinction is the redeeming quality of AEH that sets

it apart from other homogenization approaches.

Conditions encountered in the analysis of composite materials are usually over a range of
temperatures or structural behavior making them nonlinear. Traditional micromechanical
techniques are suited best for conditions resembling linear or mildly nonlinear problems

employing many simplifying assumptions on the geometric shapes or constitutive models
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to make them tractable. Examples of restrictive assumptions may involve a simple mi-
crostructure geometry [13-17] or linear material models [18-22,24-26]. Their ability to treat
the micromechanical details of the material makes them useful for many applications. But
the majority of the methods, without simplifying assumptions, are normally not applicable
to nonlinear situations. Though other developments such as those in nonlinear continuum
theories have been extensive, they are again inherently incapable of handling the complex mi-

cromechanical shapes and the aforementioned multiple-scale issues associated with advanced

composites.

Though investigations in the literature for multiscale problems favor the AEH approach due
to its fundamental developments in functional analysis, other homogenization/localization
approaches are available. However, they suffer from several limitations. The approaches and

the reasons for the choice of AEH are described in the next section.

2.2 Other Homogenization/Localization Methods

This study employs AEH, whose fundamental approximation is that the primary dependent
variable can be composed by the superposition of a smooth global solution and a rapidly
oscillating local solution. The sum of the two solutions is represented by the first two terms
of an asymptotic series in €. Based solely on this approximation, the underlying goal is to
develop hierarchical continuum field equations for the coupled multiscale problem. The AEH
method is not the only approach available which can handle the complex coupling in length
scales for linear/nonlinear applications. Homogenization approaches for linear problems
notwithstanding, methods of homogenizing material properties and subsequently localizing
global solutions also appear elsewhere in the literature. The present state of progress in
these areas appears to be in the early mathematical development stages or without sufficient

generality that renders them useful only for the specific applications for which they are
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derived. Few of these methods have yet to be used routinely in engineering applications for

practical situations.

A detailed discussion and survey of four notable approaches: (1) the Fourier Series ap-
proach, (2) the Green’s Function approach, (3) the Self Consistent approach, and (4) the
Subvolume approach, are presented by Walker et al. [35] with emphasis in the analytical
formulations. Despite the seemingly veritable merit in the approaches and the subsequent
references therein, few researchers appear to employ these methods in computational me-
chanics elsewhere in the literature. This is in contrast to the sustained growth of AEH
methods. The ease with which variational equations or PDEs can be formulated via AEH,
unlike the methods described in Walker et al. [35], explains the popularity of the asymp-
totic approaches. Though the present study emphasizes mainly AEH, it is prudent in future
investigations to scrutinize the methods of Walker et al. [35] closely in the framework of

computational mechanics.

Moulinec and Suquet [36] employ Fast Fourier Transforms (FFT) to “pixelize” complex
geometric microstructures and employ a superposition of displacements to develop an ho-
mogenization approach to study elastic and inelastic behavior of composites via FEM. The
FFT circumvents meshing difficulties. The approach for nonlinear situations involves a step-
by-step integration in time and incorporates the exact Green'’s function of the linear elastic
and homogeneous analog of the material. Thus, the solution is expected to diverge from the
true behavior of highly nonlinear materials where the Green’s functions depart significantly
from elastic and homogeneous conditions. In this way, the approach is restricted mainly to
the linear regime. However, it shares the generality of the AEH approach in its ability to

treat a large variety of microstructures.

Hou and Wu [37] integrate FEM with an AEH approach to formulate a method for homog-
enizing arbitrary heterogeneous structures not limited to periodic media but with rapidly

oscillating microstructure. The developments presented are for elliptic problems which in-
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clude elasticity and flows in porous media. The fundamental difference between this effort
and other efforts in AEH is in the description of the base functions. The approach is compu-
tationally expensive due to the solution of simultaneous equations required to obtain these
complicated base functions. The multiscale base functions are adaptive to the local prop-
erties to account for the refined scale of the heterogeneities. Thus, for general large scale

problems, this approach becomes computationally prohibitive.

Woo and Whitcomb [38] present a global/local FEM to estimate local stresses in specific
discretized regions using a refined mesh with loads kinematically matched at the subcell
boundaries. The method, however, is limited primarily to linear elastic problems due to its
use of mechanics of materials to estimate the effective properties and the localized behavior.
In contrast, the AEH approach does not employ kinematic conditions when establishing a
causal link between the micromechanical behavior and the global response. Instead, the
link is established at the level of the primary variable, e.g., the deformation for structural
problems, via an asymptotic series approximation. Thus, unlike the AEH approach, the
convergence of the solution, the uniqueness of the microlevel stresses, and mathematical

consistency of the formulations in the approach of Woo and Whitcomb [38] are not ensured.

In the next section, the background and related efforts in AEH are described. The mathe-
matical basis for the approaches employed in this study can be found in a large breadth of

mathematics literature. These are described next.

2.3 Background Literature: Mathematical Basis

Although asymptotic methods have existed for many decades, the application of an asymp-
totic expansion approach for heterogeneous materials is relatively new. Some early efforts

at applying perturbation techniques to field problems in a strict mathematical context are
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scattered through the literature beginning in the 1960s and 1970s. The literature observed
a sharp increase of published efforts in the late 1970s and early 1980s in AEH as engineers
began realizing the viability of the method for transport problems and as the maturity of
the methods influenced others in the mathematical community. The increase also coincided
with the release of two authoritative texts. The earlier of the two, by Bensoussan et al. [29],
provides specific mathematical definitions, theorems, and principles for a large class of gen-
eral elliptic systems. In addition to the AEH approach, they present other techniques for

the treatment of heterogeneous periodic structures in general.

The second text by Sanchez-Palencia [39], much like Bensoussan et al. [29], is detailed in
its mathematical analysis. Although much care is taken in presenting the equations, very
rarely are the equations actually solved. Yet it is an important development because it
provides a new perspective of AEH in its applicability to engineering problems. It effectively
demonstrates the utility of AEH for more sophisticated engineering problems by deriving the
needed equations for numerous engineering examples. However, both Bensoussan et al. [29)]
and’ Sanchez-Palencia [39] favor the functional analysis aspects of AEH and provide little

discussion on how to solve the equations, particularly for practical problems.

Other AEH-related efforts in the literature since then consistently and categorically cite
Bensoussan et al. [29] and Sanchez-Palencia [39] as their mathematical bases for subsequent
novel developments. Other mathematical details can be found in, for instance, Lions [40],
Duvaut [41], Oleinik [42], Tartar [43], Jikov et al. [44], Cioranescu and Paulin [45], and
Bakhvalov and Panasenko [46].

In the next section, the literature associated with the AEH approach for general linear compu-
tational mechanics is described. Linear computational mechanics encompass low Reynold’s

number flow, heat conduction/diffusion, and linear elasticity.




2.4 Linear Engineering Problems

The majority of efforts, as documented in the mathematics literature, focus on linear prob-
lems primarily due to the ease with which linear problems can be studied via functional
analysis. Despite the significant number of publications in this area, discussions herein
are limited to those efforts that employ AEH in an engineering context. Engineering is-
sues related to AEH, namely computational issues and multiscale equation development, are

nontrivial and important facets to understand the behavior of periodic heterogeneous media.

Most developments are presented in elasticity due to the myriad range of engineering situa-
tions that can be covered based on this fundamental elliptic PDE. Examples include elastic
damage and fracture mechanics. Multidiscipliﬁary problems are also considered in conjunc-
tion with the elasticity problem, namely thermoelasticity, which requires the homogenization
of the thermomechanical properties. The homogenization of thermal properties can also be

found in the literature for efforts in solving the energy equation in non-isothermal fluid flow.

The literature here is arranged according to areas related to linear transport (fluid and heat

flow) or linear elasticity.

2.4.1 Transport Problems

The early treatment of the AEH approach can be found in areas related to flow/transport and
heat conduction in porous media. The statistically homogeneous nature of porous materials
is known to satisfy the periodicity condition required in the AEH approach. A straight-
forward presentation of AEH for flow through porous media is shown in Keller [47]. The
homogenization approach is employed to rederive Darcy’s Law yielding sets of equations for

the two length scales: micro and macro. In so doing, the approach avoids common heuris-

28




tic methods of homogenization, such as simple volume averaging, by introducing discrete
micromechanical variables via higher order perturbation terms. The velocity, density, pres-
sure, and external body force are expanded in asymptotic series where only the first two
terms, representative of the respective macro and micro variables, are carried throughout
the formulations. These discrete terms introduce traceable quantities and provide a means

of ensuring existence and uniqueness of solutions to the multiple scale linear problems.

Citing the deficiencies of Darcy’s Law, namely the inability to handle velocity gradients and
boundary layers, Ene [48] presents the AEH approach for the Brinkman equation. Among
other more complex engineering situations also considered include flow in a fractured porous

medium and fluid-solid interactions.

Chang and Kikuchi [49] applied the homogenization method to analyze the non-isothermal
mold filling process used in resin transfer molding and structural feaction injection molding.
The approach employs a doubly porous woven fiber preform, the first scale at the scale of
individual filaments, the second at the scale of bundled fiber tows, and the third at the scale
of the global/macro structure. Stokes flow is assumed for the microscale transport where
the resistance of the flow provides an estimate of the permeability tensor at the next length
scale. The tensor is then used in Darcy’s Law which can then be homogenized once again to
provide a global permeability tensor for the Darcy’s Law flow assumed to govern the macro
mold filling problem. Hence, the homogenization procedure is reiterated to model the pore

structures in the two hierarchical regimes.

Flow through porous media is primarily a linear problem because the Reynold’s number
is typically small. No AEH investigations appear to consider nonlinear inertial effects or

convective terms.

Few research efforts seem available for AEH solely for simple heat transfer problems apart

from the mathematics literature. The focus here is on engineering problems. The exist-
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ing literature in this area appears classifiable into two specific categories: those treating
multidisciplinary problems and those considering the complex microstructure geometries of

certain types of composites.

Different from related efforts in other mechanics fields, thermal properties depend little on
temperature gradients and mostly on the temperatures. That is, it is more common to

associate thermal conductivity, k;;, as a function of temperature
ki = ki (T). (42)

Localization of the primary variable is typically uninteresting from a practical point of view
because the variable is assumed to adhere to an asymptotic series whose terms after the
zeroth order are very small. The higher order terms of the series, representative of the
oscillatory temperature variations arising from the periodic distribution of inhomogeneities,
are small compared to the zeroth order behavior of the temperature. Therefore, the primary
{rariable at the local level will appear nearly constant. The gradients and heat flux (or strains
and stresses in solid mechanics), however, provide greater information and show significant
nonuniformity at the local level. In light of these observations, it is expected that the AEH
heat transfer literature is limited primarily to homogenization with few considerations of
the localized information because the local temperatures appears constant and uninteresting

due to the dominance of the first term of the expansion. An investigation exploring these

observations were shown by Chung et al. [50].

Thermal problems were treated first analytically by the early mathematical investigations.
Many of the relevant references are shown in Bensoussan et al. [29] and Sanchez-Palencia [39].
In contrast to the governing equations in other mechanics areas, the thermal problem is

tractable analytically because temperature is the only unknown and is a single degree of

freedom.

Aside from the general mathematical considerations, researchers have attempted to under-
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stand the thermal behavior of complex composite materials. Woven fabrics are employed
in the manufacture of printed wiring board substrates. Dasgupta and Agarwal [51] use the
two-scale AEH approach to study the orthotropic thermal conductivity of plain-weave fab-
ric composite laminates. An analytical subproblem is studied to augment the numerical
approach. Closed-form expressions are proposed to estimate the effective conductivity of
the microscale unit cell. The analytical results are compared with the Finite Element (FE)
solution of the microscale equations and limited experimental results. The analytical aug-
mentation to AEH appears useful in problems where the solution of the microscale BVP
must be avoided. However, two concerns are evident from their paper. First, the solution of
the microscale BVP provides the necessary information to perform localization later in an
integrated mathematically consistent multiscale analysis whereas their analytical approach
provides only a means of homogenization, not localization. Second, the analytical augmen-
tation is tailored for specific microstructure geometries, thus removing the generality of the
AEH numerical approach. At the expense of the ability to treat general microstructures,
their analytical augmentation to AEH removes the need to solve the microscale equations.
This augmentation approach, which does not appear to present significant computational
cost savings, is dubious because the solution of the microscale equations in AEH is an inte-

gral feature of making the approach general in the present study.

The paper by Chang and Kikuchi [49] discussed earlier also solves the energy equation in
a non-isothermal mold filling problem for composites process modeling. The transient heat
conduction problem is considered assuming a linear unchanging conductivity tensor and
surface convection. The linearity of the problem leaves the heat transfer problem uncoupled
from the fluid flow portion of the analysis. It is of the opinion of other investigators that the

problem must be considered in the fully coupled context for accurate modeling [52].

Of the developments to date, AEH employed in the study of elastic materials is most numer-
ous in the literature. This is due to the wide range of problems which can be analyzed by

studying linear elasticity. In the next section, a brief survey of the literature encompassing
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elasticity problems for AEH is presented.

2.4.2 Elasticity Problems

The bulk of the developments in AEH appears for the elastic problem. This is due to the
larger number of applications feasible modeled by linear elasticity and the general robustness
of formulations for continuum mechanics in nonlinear structural mechanics and its adapt-
ability to multiscale situations. The difficulty of problems in the flow and heat transfer areas
increases significantly even for small departures from linearity. Such limitations appear not

to be present in structural mechanics.

In this section, the literature for linear elastic problems is reviewed. Emphasis is on efforts
that employ linear elasticity as the basis for applications to more complicated engineering

problems within the AEH framework.

Although the early formulations for simple elasticity are shown precisely in Bensoussan et
al. [29] and Sanchez-Palencia [39], interesting and novel developments arise as the level of
complexity increases in the elastic engineering problem. Lene [53] proposes an approach for
studying damage in elastic UD composites with arbitrary cross section where the damage
origin is localized to fiber-fiber and fiber-matrix interfaces. The damage is simulated by
a displacement discontinuity applied by numerically inserting a singular element with zero
thickness (slipping only) in the damaged region. The magnitude of the discontinuity is
specified by a Coulomb friction principle. Throughout the analysis, the matefial is assumed

elastic and additional damage evolution laws from thermodynamic theory are employed to

trace the damage through the transient problem.

An optimal shape design methodology is introduced by Bendsée and Kikuchi [54] that does

not limit the problem to equivalent initial and final design topologies and avoids FE re-
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meshing. The AEH approach is employed to calculate effective elastic properties repeatedly
to satisfy specified design requirements. Upon computing the optimal distribution of material
in space, an anisotropic mechanism results. The mechanism is constructed by an infimum

of periodically distributed small holes in an homogeneous isotropic material.

Adaptive mesh refinement to improve numerical and spatial accuracy is considered by Guedes
and Kikuchi [55] for effective linear elastic composite properties. Convergence and error
estimate studies are also undertaken in the context of FEM. The AEH approach is employed
and explicit details and physical interpretation of the characteristic function or correctors

are shown.

The AEH approach has also been applied to biomechanics applications. Hollister et al.
[56] employ the homogenization procedure to study the linear elastic material properties of
porous trabecular bone structures. Global and local information are estimated and apparent

stiffnesses were computed and compared with experiments.

As an extension of an earlier paper for the damage analysis of UD fibers [53], Lene and
Paumelle [57] study the damaged properties of woven fabric composites. Again, the ap-
proach employs the elastic constitutive equations with the damage modeled as slipping at

an interface without separation.

The homogenized properties from the AEH approach are compared with those from me-
chanics of materials approaches by Hollister and Kikuchi [58]. The strain energy densities
are computed and compared for the cases when the homogenization approach is employed
for a coarse FE model or the direct solution of the whole refined composite is studied. The
mechanics of material approaches are based on flexural and stiffness measurement techniques
that represent methods of estimating the bounding material properties for elastic materials
as described in Chung and Tamma [59] which provides comparison of effective properties

for other types of homogenization approaches in addition to AEH and standard mechanics
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methods. Their study shows the agreement between AEH and other approaches for linear

elasticity.

In other related works, Kawamoto and Kyoya [60] studied porous rock and pattern bolting of
rocks using an earlier AEH development for simple elastic materials [55]. This applications-
oriented investigation computed the effective elastic material properties for various volume
fractions in a study for geomechanics. Lefik and Schrefler [61] applied AEH to linear elastic
beam theory including shear rotations and warping using FEM. Equations of elasticity for
bricks and mortar used in masonry structures were homogenized and studied by Papa [62].
The effective elastic properties and the damaged properties are computed via homogeniza-
tion. Using digital image-based (DIB) geometric modeling, Golanski et al. [63] studied the
thermoelastic behavior of layered metal matrix heterogeneous materials: a substrate of low
alloy steel attached to a composite layer. In particular, the mismatch in material properties
between successive layers and the microstresses in the composite layers was examined. A

review of the method for linear elasticity is presented by Chung et al. [64].

The elastic problem has been studied extensively in the literature. Despite the seemingly
simple considerations for elastic materials, the multidisciplinary nature of sophisticated prob-
lems and the complex computational issues associated with the homogenization approach

make the study of elastic materials a cogent beginning for more sophisticated engineering

problems. Some of these are described next.

2.5 Inelastic Problems

Stemming from early mathematical derivations by Sanchez-Palencia [39] and Sanchez-Hubert
[65], numerous efforts have investigated the curious viscoelastic behavior of heterogeneous

materials using AEH. Early mathematical literature for the viscoelastic problem in the con-
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text of AEH shows an hereditary effect, the dependence of the present state of deformation
on all previous states, occurs due to a physical and mathematical coupling between the
non-hereditary phases and the elastic and viscous material tensors. Phases that are history
independent appear to produce history dependent effects when composited together. Anal-
ogous behavior in other rate-independent inelastic (such as elasto-plastic) investigations is
not observable because, regardless of the length scale under consideration, the incremental
constitutive (Prandtl-Reuss) equations are Hookean in form. That is, general viscoelastic

constitutive laws are non-Hookean:
Po = Qe, - (43)

where P, Q are differential operators whose coefficients are material properties and o, €
are stress and strain tensors. Other types of inelastic constitutive models can typically be

expressed in a Hookean form:
o = R(o,U)é, (44)

where R is a tensor whose terms are functions of material properties, stress components
(o), internal energy (U), or other state variables. A Hooke’s law form for the constitutive
model possesses only one material property tensor and implies that the AEH approach can
be extended forthright to the inelastic problem. The homogenized form of an Hookean
constitutive model is Hookean as well. Such an observation is not permitted in non-Hookean
forms. As a result of the equation development, mathematical interactions between the
multiple terms over multiple phases are likely to occur. Another interpretation is that

physical interactions between phases occur due to the simultaneous presence of solid and

fluid effects.

Sanchez-Hubert and Sanchez-Palencia [65] showed mathematically that the instantaneous
viscoelastic constitutive equation for a Kelvin-Voigt material can be related to long-term
aging or long-memory effects via the AEH formulation. That is, the Kelvin-Voigt model
applied to the microlevel constituents, when homogenized, may result in a macrolevel stress-

strain equation different in form from that of the original microlevel equation.
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The difference is a long-term aging or dissipative corrector term that manifests itself in the
macrolevel equations. Two causes mathematically give rise to the corrector term. The first is
the asymptotic expansion of the displacement variables, the central assumption of AEH. The
second is the presence of additive rate-dependent and rate-independent terms in the stress-
strain relationship. Sanchez-Palencia [39] shows that the coupling results in an additional
term in the macro stress strain relationship whose interpretation is that of long memory.
Unfortunately, though their investigation provides insights into the mathematical origins of
the long-memory effects, the magnitude of those effects or even their practical demonstration

were omitted. That is, the relevant equations have never before been solved.

Francfort and Suquet [66] later showed a different formulation with a simpler development of
the viscoelastic micro-macro creep equations. Their work extended the earlier developments
[39] by investigating convergence to the continuum solution and boundedness of the principal

quantities. But despite the depth to which the investigation of the mathematics is presented |
in Francfort and Suquet [66] and the novelty of the formulations in Sanchez-Palencia [39],
many of the computational and numerical details for the viscoelastic multiscale creep problem

in practical and engineering applications have only recently been addressed by Chung et

al. [67-69).

Viscoelastic methods via AEH for heterogeneous materials have been attempted and are

present in the literature. Two efforts are available [70,71], described below, both of which

make several assumptions regarding the multiscale issues.

Dynamic viscoelastic response was investigated where the effective composite properties pre-
dicted were compared favorably with limited measurements [70]. The dissipative corrector,
however, is avoided by imposing an appropriate harmonic oscillating strain comprised of time-
dependent and time-independent components in the dynamic viscoelastic problem. Through
the AEH derivation, only the time-independent component is retained hence precluding the

time-dependent dissipative corrector effect from appearing.
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Shibuya [71] performed the asymptotic expansion of the displacements in the Laplace do-
main wherein the equilibrium equations governing the fiber and matrix phases are assumed
uncoupled. The governing equations are rendered in the Laplace frequency domain where,
together with AEH, the viscoelastic response in a single time-step approach can be obtained

for Maxwell materials using the elastic-viscoelastic correspondence principle.

Other methods, different from AEH, that treat the viscoelastic problem for more sophisti-
cated constitutive models, employ analytical methods or expeditious assumptions that are
inapplicable to general composite microstructures. Thus, despite their availability, especially
those that estimate broad-spectrum phase behavior to which the quasi-static problem is a
subset, the important limitation is in their assumption for simple shapes in the microstruc-
ture. An additional limitation in these existing methods is the decisive decoupling of the

primary length scales. The AEH method still remains an open area for viscoelastic materials.

Research in the homogenization of linear problems continues to be of interest in the study
of heterogeneous materials. They provide the mathematical and physical foundations upon
which extensions to more complex, nonlinear problems can be based. Linear problems are
also important in computational mechanics because important implementational and com-
puter issues are easier to identify. Ultimately, however, classes of realistic multidisciplinary
nonlinear problems are of greatest interest in the field of computational mechanics. Litera-

ture for nonlinear problems employing AEH is described next.

2.6 Nonlinear Engineering Problems

Limited AEH efforts are in the literature for nonlinear engineering situations due to the
complicated issues associated with evolution of microlevel properties. To date, most compu-

tational mechanics efforts to treat nonlinear problems, apart from the present study, appear
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exclusively for solid mechanics. Efforts are divided between geometric and material nonlin-

earity.

In perhaps one of the earliest demonstrations of a nonlinear engineering problem using com-
putational mechanics and AEH, Guedes [72] employs FEM for quasi-static elasto-plasticity
with finite deformations but without updating the microlevel properties between successive
numerical iterations. The true elasto-plastic problem must involve change of material prop-
erties in the microstructure constituent phases, as recognized in Suquet [73]. As yielding
occurs, the material properties must be rehomogenized to accurately model the evolving

properties. That procedure was later corrected in a paper by Terada and Kikuchi [31].

Ghosh and co-workers [33,34] use the Voronoi cell Finite Element Method (VCFEM) to
derive the governing equations for two-scale elasto-plastic analysis of heterogeneous materials
with AEH. The VCFEM is an alternative to conventional meshing of the heterogeneous
microstructure. The analysis is for small displacements with the constitutive model expressed
in Hookean form with an instantaneous tangent modulus, making the extension from AEH .
for elasticity straightforward. The computational approach employs an fmplicit solution

procedure which solves the nonlinear governing equations iteratively.

Galvanetto et al. [74] present an elasto-plastic formulation for plane problems within an
asymptotic expansion framework. By attempting to treat general nonlinear problems, their
investigation poses restrictions on the forms of the constitutive equations to which the
method can be extended. Again, it is apparent that constitutive models adhering to Hookean
forms can account for heterogeneous media by extending the AEH approach for elastic ma-

terials. This approach has been discussed indirectly in other investigations [31].

Fish et al. [32] present an eigenstrain formulation to account for Hookean constitutive laws
with additive strains in an elasto-plastic framework. A two-point integration scheme is

proposed to decrease computation time with limited loss in accuracy. The equations are
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integrated implicitly using an iterative scheme.

Other work in nonlinear AEH are varied. Issues of geometric nonlinearity are considered
separately by Smit et al. [75] and Takano et al. [76]. Rate dependent nonlinear composites
have been considered by Wu and Ohno [77]. And dynamic transient problems with nonlinear

elasto-plastic models have been reported by Chung et al. [78].

Computational methods for heterogeneous media via AEH are still in a state of early devel-
opment as evidenced in the available literature. Many areas still remain as fertile ground
upon which new computational methods can still be developed. Several conclusions from

this literature review are described next.

2.7 Demonstration of the Homogenization Method in

Elasticity

Asymptotic homogenization approaches, and in particular their associated computational
methods, for linear problems are in continued development as evidenced in the literature.
Linear problems provide the sturdy foundations upon which nonlinear phenomena can be

studied.

The goal of this section is to present AEH in a simple manner for the elastic problem.
Elements in this linear formulation provide the foundations to which later developments will
be reference. Also discussed are the FE computational issues associated with the model
linear elastic problem. These will ultimately convey to any extension of the approach for

inelastic/nonlinear problems or problems outside the realm of continuum scales.
The AEH approach for linear elasticity is well established and rigorously derived in the
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literature. This section provides only a simple derivation to demonstrate the approach in
practical terms for computer implementation. In section 2.7.1, the conventional equations
of elasticity are defined formally. Then in section 2.7.2, the multiple scale equations are

derived. In section 2.7.3, the relevant FE formulations are described, and the results are

presented in section 2.7.4.

2.7.1 Equations of Conventional Elasticity

The PDE system for elasticity is described here for a bounded connected domain {2 € R3
with smooth boundary 89 in coordinates z; (indices denote quantities in % and the Einstein
summation convention is used). The boundary is composed of two parts, ;2 and 0,2, which
are the surfaces of non-zero area associated with the Dirichlet and Neumann conditions. The
body © may further be divisible into two parts, Q; and Q, by a smooth surface, I'. Figure

9 shows a schematic diagram of the body where Q = ; U2, and 09 = 9§, U 6€2,.

Figure 9. Elastic domain definitions.
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2.7.1.1 Boundary Value Problem (BVP)

The BVP is comprised of four key components: (1) equilibrium, (2) compatibility, (3) consti-

tution, and (4) sufficient boundary conditions for well-posedness. The equilibrium condition
is specified by

aa’i]‘

6:cj fz ( )
where o;; is the Cauchy stress tensor and f; is the body force vector. In the framework of
linear elasticity with displacements as the unknowns, compatibility is inherently specified by

the strain-displacement relationship given by

_ 1 auz auj
&) = 2 (31‘]- + 8:@) ’ (46)

where ¢;; is the strain tensor and u; is the displacement. The relationship between stress

and strain, in this case Hooke’s Law, gives the constitutive equation for the problem.
0ij = Dijri€xt, (47)

where D;ji is the fourth order elasticity tensor which is piecewise smooth in each phase

having discontinuities on the interface I'. The symmetry and ellipticity of D;j;i, are specified
by
Dijki = D = Dijix = Dy (48)

Diju€ijen > €€ s> 0 Ve;j(u) (symmetric). (49)

Finally, Dirichlet and Neumann boundary conditions, corresponding to the clamping (u;)

and surface force traction (F;) boundary conditions on 02, ensure a unique solution. These

are given by

;=0  on 0,8 (50)
Oy = .Fz on 32(2 (51)
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The BVP can be solved in one of many number of different approaches. The present ap-
proach employs FEM to approximate the solution on a discretized general domain. As such,

variational forms of the equations expedites the formulations.

2.7.1.2 Variational Problem

The variational formulation of the elasticity problem is presented here only as a manner
of formality. The description becomes complete when presented in a functional analysis
framework. Additional and more general details are available in Bensoussan et al. [29] and

Sanchez-Palencia [39].

To write variational forms of the equations, the Hilbert space for the norm of (H!(f2))?

defined as

V ={u;u € H(Q) ;ulsa =0} . (52)

The symmetric inner product, by virtue of the symmetry of the material property tensor in

equation (48), is given by

auz 31}

The variational form of the BVP given in equations (45)-(47), (50), and (51) is: Find u; € V

such that

a(u,v) =/fividx+/ Fuds Yy, €V. (54)
Q 8.0

The variational form of the equations can then be extended using an FE approximation. The

FE formulations will be presented in the next section in the context of general heterogeneous

media.
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The conventional equations of elasticity are the governing equations for single phase, homo-
geneous materials. Methods for heterogeneous materials typically involve an homogenization
step. The AEH approach involves an homogenization step that ié derived directly from the
governing equations. This characteristic of the equations and their developments lends math-
ematical rigor to the homogenization approach, as frequently described in the literature. The

“rigor” will be described in detail in the next section.

2.7.2 Homogenization in Elasticity

This section describes in detail the approach for employing a perturbative asymptotic series
in € for the displacement variables to derive multi-scale equations governing elasticity. We
assume that the material under consideration has a microstructure comprised of multiple
phases, and the orientation and shapes of the phases are such that they are distributed

repetitively, periodically in all three-dimensions throughout the material.

For a more formal mathematical description, let 2 be a bounded domain in 12 of coordinates
z; (or x), as depicted in Figure 9. The domain 2 denotes the macrolevel or global structure.
In the space of R2 coordinates, let there be a fixed parallelepiped Y on coordinates y; (or y)
of edges 3¢ (see Figure 10). All other parallelepipeds in the body are obtained by an integer
translation of length ny? where n is some integer. This assemblage of parallelepipeds implies
that a single parallelepiped, or unit cell, is Y-periodic in y; due to the repetition of the cell

Y throughout the body.

In a conventional homogeneous material, the tensor of material properties D;;; is indepen-
dent of position x. If the material is not homogeneous, however, the material property will
depend on x. Moreover, if the heterogeneous material contains a periodic microstructure,
where the length of the period is much smaller than any other lengths appearing in the prob-

lem, then the material behavior can be approximated by a homogenized material property
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Figure 10. Y-periodic parallelepiped cell.

tensor, ijk,. based only on the salient features of one period. The homogenization method

provides a means of computing D%, such that the global problem can be treated.
g ijkl g

The periodicity runs throughout the entire coordinate system z;. The microstructural vari-
ations and the characterization of heterogeneous information are defined in the coordinate

system y;. To characterize the periodicity of the material properties, € is defined such that
. X
k(%) = Dijkl('g‘)y (55)

where ¢ is a real positive parameter where ¢ € (0,¢&,]. The function Df, is eY-periodic in

;. The period £Y is a repeated array of parallelepipeds in * whose edges are length eyy.
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From these developments, equations (45), (50), (51), and (47) are rewritten as

O0E.
ij o in Q-
ot + fi=0 in Q;

u; =0 on 0
O'fj’i’Lj - E on BQQ;

Ufj = ijszkl(ue)a

where the € script denotes quantities describing the true, high-resolution behavior the ma-
terial under consideration. The given forces f; and F; are noticeably not periodic because

they are applied on the surface of the global body €.

To summarize thus far, quantities such as the stress, of;, with the script ¢, are the stresses
in 2¢ which give high-resolution details of the locally periodic nature of the structure. This
stress is often impractical to compute due to the large amount of modeling effort needed to
create a full size mesh with all the details of the microstructure. Moreover, the computer
time needed to solve the problem on the mesh is cost prohibitive. It is prudent, therefore,
to introduce an homogenization assumption. This is done by identifying the global body in
x; as an homogenized body with a definitive unit cell(s) in the coordinate system y;. The
local (or micro) coordinates y; are related to the global (or macro) coordinates z; via the
parameter €. Thus, the coordinate system y; is a magnified scale of the microstructure whose
absolute lengths are given in the zf coordinate system. And due to the same global body
defined in z¢ and z;, the distance between any two points in these coordinate systems are

equivalent.

The displacements are approximated with an asymptotic series representation in € given by

ui(x) = ul®(x,y) + eV (x,y) + &%, (60)

1 7

whose terms must be obtained by solving sets of equations, i.e., BVPs. The hierarchical
equations will be described next. The Y-periodicity of the material requires that the stresses,

strains and displacements also be Y-periodic. The functions ugf )(ac, y) (j=1,2,...) are assumed

45




smooth functions that are Y-periodic in the variable y; such that y; = z;/¢ and defined for
z; € Q,y; € R® independent of . Thus, conversion of lengths between the magnified scale y;
and the original length scale ¢ is computed using €. Henceforth, it is common practice to
refer to any quantity with y-dependence as Y-periodic. Any quantity that is solely dependent

on z with the script € notation is eY-periodic.

Moreover, derivatives in z¢ must now be expanded in a chain rule for the space z; possessing

a periodic microstructure in y;. The derivatives are now over two length scales given by

0 o 10
5;—‘51;'{"255; (61)

)

The strains in equation (46) are therefore rewritten as

( E) _ 1 auf + au;:
ez]‘u - 2 3.’17j 3zi
_ 10w 10u? . oul” L1 8ul”
2 8x]- 3 8yj 8.’151 3 Byi
oul®  oul  oul)  oulV
+€ oz, + By; +€ oz, + e
2 2 @) @
+ s26u’( ) +Eau§ ) i ML S
6xj 8yj 81:,- Byi

2\ 0y;  Ow Oz; Oz Oy; Oy
€ 8u£1) 3u§.l) auf."’) 8u§2)
+ + + +

1 (6’u§0) N au§°)) + 1 <3u§0) N Bug-o) N 8u§1) N 3u§1)>
2

"o\ Bz, T Bx oy o
1
= Eefj 1)(x, y) + eg?) (x,y) + sez(.Jl-)(x,y) +e2.-. . (62)
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Hooke’s Law in equation (47) also can be written in the expanded form as

o5 = ijkz(x)ekl (u)
D) 1 8u§0) . 8u§°) ) 1 auz(p) . 8u§.°) . augl) . augl)
B kY 2€ 3yj 6yi 2 8.’L‘j 8xi 3y]- 8y,~

N e (o Z(1) . 8u§.1) . 8u§2) . 0u§-2) N
2 6a:j sz 8xj 5yi

IS

= 205 (x,y)+o§f)(x,y)+sa§;)(x,y)+£2--- : (63)

Substituting equation (63) into (57) gives a new set of hierarchical BVPs. These hierarchical
BVPs are the multiple equations relevant to each scale in the multiple scale problem under

consideration. The substitution yields

(=1) (-1) (0) (0)
1993 2903 009 1995
€ +& +é +e€
) Bag ) 0 aag ) ) aag) . 503 )
+e€ +é€ +e€ +e—"—+--+fi=0,
31']‘ Byj 8xj 8yj
and upon rearranging terms, yields
80’g._1) 80'(_1) 30-(0) 60'(0) 60'(1)
e et L | S+
ay]’ ij 8yj 8.’13_7' ayj
(65)
oo 9
+et | =+ =L )+ =0.
Oz; 9y,

The equations must be valid for all ¢ — 0. Therefore, the coefficients of the powers of €

must be zero identically. This implies that the first three coefficients are written as

‘ (-1)
- -2 0oy
e “: —— =0 ; 66
B0, (66)
ooV 959
el 24— =0 ; (67)

Or; Oy
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9oy 0oy
g _8—231‘—+_8j—+fi=0' (68)
J J

Equations (66)—(68) are the hierarchical boundary value problems.

In summary thus far, three key operations have been performed. In the first operation, the
displacements in e-space were replaced by the series approximation in equation (60). In the
second operation, the chain rule in equation (61) was used for derivatives. The chain rule is
a consequence of the decomposition of the true structure in z{ into an homogenized body in
x; (in which lengths are identical to those in the coordinate system z; ) with a representative
unit cell in y;. The unit cell is characterized in a coordinate system that is a magnified scale
of the microstructure that originally resides in z¢. In the third operation, the displacements
and chain rule were substituted into the conventional BVP for elasticity, and by setting
the coefficients for the powers of € to zero, three equations (66)—(68) were developed. The
first and second equations are discussed in the next section in the derivation of a microlevel

equation. The subsequent section employs the micro equation to derive a coupled multiscale

BVP for linear elasticity.

2.7.2.1 Micro Equation

The micro equation refers to the equation governing the elastic phenomena on the domain
characterized by the y; coordinate system (the z; coordinate system characterizes the macro
domain). The micro equation is derived from equations (66) and (67) where the first equation
defines the macro displacement variable which is then used to solve the second equation
to give the first order perturbative variable. The present formulation is for a dual-scale

heterogeneous material where it is implied that continuum level descriptions are applicable

to both length scales.

Substituting for the first three orders for stresses and invoking the symmetry associated with
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the material property tensor gives the following alternate forms of equations (66)-(68).

0 Gu(o)
—Diju—mi— = 0; 6
ayj ikl ayl ( 9)
) 9 ou® 8 aw®  aul
oz, M oy oy, M ( 5z T By ’ (70)
] ou”  ul) ] oul)  oul®
BIL']'DJH ( 81‘1 + 6yl T Byj Ikt 83:1 + 6y¢ + f 0 (7 )

By virtue of the Y-periodicity of u§°’ (x,y) and the ellipticity (and positivity characteristics)

of Djj, it is evident that

| u'®
| t=0. 72
B, (72)

This important result reveals that u§°> is a constant in y;, or stated differently, u§°) is the
global solution, the displacement of the macrolevel body and independent of y;. With this

in mind, equation (70) is simplified to

0 0ul®  oulV
%Dijkl (_81'_&;- -+ —a—éc[— = 0. (73)

Equation (73) is an equation that relates the zeroth and first order displacements. Based

on the global solution, u§°’, the perturbative displacements, u(l), can be obtained from the

7

equation
| 0 Bu(l) 3‘11(.0) 0D;;
| — | Dy | = — (74)
| 9y; Ay, Oz, Oy;

In practice, however, the solution of equation (74) is cumbersome in an FE sense if ugo)
varies over z;. Such a scenario requires the repeated solution for ugl) for every uz(.o), a task
that is computationally onerous. Or stated differently, if one employs a straight-forward

approach, the solution of equation (74) must be repeatedly obtained for each global element.
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Fortunately, a simpler and more efficient approach is available. To help introduce the simpler

version of the same problem, the Y-periodic Hilbert space Vy is defined as
Vy = {u; u; € HL (R®)Y — periodic}, (75)

where the script loc refers to the local Y-periodicity depicted in Figure 11. In Figure 11,
the solutions at points a; and o, are approximately equal due to their local proximity in
z;, though not the same, and their respective locations within each period, y;, which are
the same. The solutions at o; and (3, are different because their locations in y; are entirely
different despite their local proximity in z;. The solutions at (» and f; are also different
despite their similar locations y;. The difference is due to their large distance apart, much

larger than the size of a single period, ;.

It is proposed that the solution of the perturbative displacement takes the form

W wou
u; :Xi’?a—a’;;——i-ﬁi (x), (76)

where &EI) (x) is a constant of integration independent of y; and x is the solution to the

auxiliary variational problem given by: Find x¥ € V4 such that

ax}c"" B’Ui / 8Dijmn
D dy = vj————d Vv; € Vy. 77
/Y L oy y Vi By, y Y (77)

The function x* is often termed the elastic corrector. Its namesake is described later in the
development of the homogenized global equations. Other terms in the literature describe xF

as the characteristic function or, more classically, its gradient is the so-called misfit strain.

It is immediately evident that, via a superposition principle, the solution of equation (77)
eventually yields a solution to equation (74). Equation (74) is often called the micro-equation
because it relates the global solution to the perturbative solution and is solved over the
domain of the unit cell. It is also the equation governing the smaller of the two length scales

and illustrates the coupling between micro/local (ugl) ) and macro/global (uﬁ‘”).
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Figure 11. Local periodicity.

From equations (62) and (63), approximate microlevel strains and stresses can be computed
using the solution for ugl). The expression for microlevel strains is given by substituting
equation (76) into (62) and taking the zeroth order terms of & which gives
QI T N O
&) (x,y) = —é— (a;;j + 8;:,- + a;;j + axfi )
1 (au§°> oul” | O ou) | Oxg” aug."))
2\ Oz; 0zx; Jy; Oz, Oy; Ox;

Hy™n gg)
Xi ) Ou (symmetric about ij). (78)
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In a similar way, the microlevel stresses can by obtained from the expression

o(x,5) = Digua(y)eP (x,y)

(79)

8)(2”") D
dy; ) O0zn

= Dijn(y) (5im5jn +
Localization is performed by employing equation (78) to yield the microlevel strain details.
Similarly, equation (79) gives the microlevel stresses. Localization refers to the process of

obtaining microlevel information, or information on the y; coordinate system from the global

solution (ul”).

In summary thus far, the corrector x* was introduced as a means of expressing the pertur-

bative displacement ugl) in a closed-form relationship with the global displacement uz(o) It

is of key importance to distinguish between the global displacement u,@) and the microstress

az-(;-) ), Although both share the same script notation for the zeroth order, the gradient of the

global displacement in z%, by virtue of the chain rule of equation (61), does not immediately

give the global stress. This inequality can be expressed by
u® | u

But mathematical consistency of the formulations can be demonstrated by showing that the

gradient of ul(o) in z; gives the volume average of the gradients in z§. This is characterized

by
1 (0) _ augo)
I)zl Yaij (X7Y)dy - al'] ’ (81)

where |Y| is the volume of the unit cell. That is, the average of the microstress in equation

(79) gives the global stress.
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2.7.2.2 Single-Point Localization Paradox

Equations (78) and (79) exemplify a key deficiency of the AEH approach. Despite the
equations being “micro equations,” length scale information, namely the scale parameter
g, is conspicuously absent. This precludes the exchange of length scale information across
multiple scales. The absence of ¢ is attributable to the first order approximation of the
asymptotic series in €. The gradients of the first order displacement for strains and stresses
are therefore zeroth order in €. The physical interpretation is that the AEH approach involves
point-wise localization. Upon homogenization, the scale and details of the microstructure
are “smeared” away. When one returns to compute microlevel information via localization,
the microstrains and stresses are computed at a single point in the global body. An entire
unit cell exists at the single point, z;. Thus, the point-valued global strain is then used to

compute the local strains (and stresses) over all ;.

A paradox is therefore evident. The scale parameter € is a quantity that magnifies the
coordinate system of the microstructure. But the microstructure is assumed mathematically
disconnected from the global body. The scale parameter is not used to relate a position
in y; to the original heterogeneous body in the e-space. Thus, if two points (z} and z?)
are selected arbitrarily close, both will have an entire unit cell Y. The two unit cells may
therefore overlap, hence the paradox. We presently call this the single-point localization

paradox and is depicted schematically in Figure 12.

It is reassuring, however, that in equation (78), the strain term outside of the parentheses
is the only term dependent on z;. The other terms are constants or depend on y;. Thus, in
the limit as the two points approach each other (z} — z?), the global strain at the point is
single-valued. Even if two selected points in z; are very close and have two different unit cells
associated with them, the microstrains computed over those two unit cells become the same
as z} — z?. That is, if 2} and z? are very close but not the same, the difference in computed

microstrains may be trivially small. An analogous argument can be made for microstresses.
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Figure 12. The single-point localization paradox. The approximations of the
AEH approach remove length scale information at the microlevel.

This allows for unit cells to overlap conceptually and leads to the

localization paradox.

The single-point localization paradox implies that equations (78) and (79) are only quan-
titative “estimates” of the local strain and stress. To have an exact prediction entails the
solution of the fully refined problem with all microscale details of the structure modeled us-
ing a prohibitively large number of degrees of freedom. Such is the trade-off between solving
an homogenized solution with estimates of the local behavior and an extremely large single
scale high resolution problem possessing a large number of degrees of freedom. The local
estimates are merely representative of the behavior. In an FE context, this local region is

an element or the region near the quadrature point where the gradient terms of equations

(78) and (79) are computed.

2.7.2.3 Macro Equation

Equation (76) is now used to complete the derivation of the effectively homogenized equations

for linear elasticity. That is, the effective macro BVP is formulated here. Substituting
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equation (76) into (71) gives

0 0w o dur
Ba:j gkl 8xl Byl 8$n

(82)

b} o (., auQd\ o) oud?
+3_iji]'kl [53—3; <Xk oz, + oz, + By + fi=0.

If uf?) is to be Y-periodic, then by virtue of the definition of Y-periodicity, equation (82)

admits a unique solution for ugz) up to an additive constant if and only if

0 ou?
/Y %Dijkl-éi—dy =0. (83)
j

Substituting equation (82) into (83) yields

9 8l Oxp" Ouly
—Di . k k b dy =0 84
A {ij Ikl I: Oxl * 8yl &vn + f y ( )
and upon rearrangement and dividing both sides by the volume of the unit cell |Y| gives
o (1 X" duly
s 71, o [+ S o )

Equation (85) and equations (50) and (51) constitute the homogenized BVP in elasticity.

The material property tensor is now

P 1 / g™
i7 = 5~ ij m5 n .
ijmn ]YI y D ki 5;; in T ayl dy (86)

Thus, the average zeroth order stress, also the macrolevel effective stress, is given by

O\ _ np Ou
<Uij > = Dz‘jkl%’ (87)
= Dzhjkl <61(§)> ) (88)

where the volume average notation is implied by the brackets:

1
<>:I—Y—|/Y<)dy. (89)
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Equation (86) provides the motivation for referring to x¥ as a corrector function because
of its corrective feature in the equation. In its absence, equation (86) gives the standard
volume average of the material properties, characteristic of the Rule-of-Mixtures approach
for estimating homogenized properties of heterogeneous materials. Thus the corrector effec-
tively “corrects” for the presence of multiple phases within the unit cell and their collective
interactions evervwhere else in the global body via periodic boundary conditions on Y.
The gradient of x¥' can also be interpreted as a misfit strain because it accounts for the mis-
match strains resulting in the multiple phase microstructure. However, this study chooses
the “corrector” terminology for its physical interpretation where x* corrects the heteroge-

neous material from the otherwise conventional homogeneous understanding of the governing

equations.

This concludes the derivation of the multiscale BVP for linear elasticity. The equation
for the microscale is given in equation (77) and the equation for the macroscale is given
in equation (85). Solving equation (77) gives x¥ which is then used in equation (86) to
calculate the effective homogenized properties. The homogenized properties are used in
equation (85) to compute the global solution, u§°>. Once the global solution is obtained,
the perturbative displacement term, uz(»l), can be computed using equation (76). Moreover,
the microlevel information can be computed using x¥' and the localization equations given
in equation (78) for strains and equation (79) for stresses. The homogenization-localization

cycle demonstrated provides the integral link allowing causal relation of the continuum BVP

across multiple-length scales.

Although the mathematical formulations are well-defined and discussed extensively in the
literature, the practical implementational issues are often nebulous. In the next section, FE
equations are formed and presented along with a computational, implementational procedure
which provides the conceptual understanding required to employ AEH in general numerical

methods.




2.7.3 Finite Elements, Elasticity, and the Homogenization Ap-

proach

This section provides a practical approach for computing the corrector, xH, the effective
material properties, ijkl, and the localized perturbative displacement term, ugl), in the
framework of FEM. The description and the utility of the AEH approach differ subtly from
the earlier mathematical descriptions when placed in the context of numerical methods. This
section attempts to discuss these differences and present a simple approach for employing

the method for relatively complicated heterogeneous problems.

2.7.3.1 Computing the Corrector

The solution of the variational equation given in equation (77) gives the corrector, . The

variational equation is rewritten here for convenience: Find x¥ € V4 such that

a mn a z a-D'l mn
/ Dz]kl X o / dy Vv; € Vy.
Y

For simplicity, consider the material under investigation to be in the class of orthotropic
materials with nine independent components in the material property tensor. Henceforth,
Voigt notation will be employed which exploits the symmetry of the strains and allows the

following notational simplification to be made:

4 A 4 \
€11 €1
€22 €2
€33 €3

. > — ¢ > . (90)

2612 €4
2613 - €5
2¢ €

\ 23 J \ 6 /
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Furthermore, the appropriate piecewise linear Sobolev spaces are implied for the test and
trial functions. A less rigorous engineering description is favored here over a mathematical
FE procedure in terms of function spaces. Additional details can be found in numerous FE

references [55,79-82]. The standard FE representation for element strain, {¢}, is given by
{e} = [B]{u}, (91)

where [B] is the element strain matrix and {u} is the vector of nodal displacements. The

element stresses are given by
{o} = [DI[B]{u}, (92)

where [D] is the matrix of material properties and {¢} is the vector form of the symmetric
stress tensor. Thus, the FE analogue of equation (77) is given in element form by

[ BroyBlayid = [ (B DYy, (93

e

where the script e denotes element quantities associated with the discretized FE domain of

the unit cell, namely the body Y®. Equation (93) can also be written for a 3-D problem as

[K°] = [F"] 7 (04)
[nGor X Néot] [PGor X 6]  [n&or X 6]
where
k9= [ BI(DlBldy" and (F)= [ [BITIDdy" (99)

and n¢ is the number of nodal degrees of freedom of each element in Y.

2.7.3.2 The RHS Matrix [FP)

The corrector is noticeably a matrix, not a vector as is the case for displacements in conven-

tional elasticity. This is a result of the multiple right-hand side vectors signifying the load,
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[FP]. Each column of the load “matrix” corresponds to a column in the material property
matrix, [D]. Stated differently, equation (93) is actually a set of six matrix equations for 3-D

elasticity. These can be summarized in a conventional sense of solving for a single column

of unknowns x™ as
K} = [ (B0, (96)

where n = 1---6, implying a total of six solutions of the problem, with

( 3\ 4 3\ 4 3\
Dn D12 Dl3
Doy, Do, Dys
D D D
pwy={ 7§ p@y =y T rp@y= ¢ TF L
0 0 0
0 0 0
\ 0 y, \ 0 Y, \ 0
( 3 ( ) ¢ Y (97)
0 0 0
0 0 0
0 0 0
{DW} = f,{D“’)} = { s, {D®} = ¢ S
Dy 0 0
0 Dss 0
\ 0 ) \ 0 J \ D66 y,

The six solutions provide the six columns of [x] in equation (94).

Thus, for a given elastic problem of a heterogeneous body, the approach requires the solution
of six sets of equations to compute the corrector. Each solution corresponds to a particular

“mode” or “character” of the unit cell: three normal modes and three shear modes.

To obtain a unique numerical solution, a zero constraint on x must be applied somewhere
within the FE model of the unit cell. This can be done arbitrarily because only the corrector

gradient is needed in obtaining the homogenized properties. For explicit computation of the
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perturbative displacement ugl), it is optimal to choose a node exploiting the symmetry of the

parallelepiped. In the present study, the zero constraint is applied on a corner node where

any three edges intersect.

2.7.3.3 Periodic Boundary Conditions

Additionally, boundary conditions must be applied to simulate the periodicity as required
by the AEH approach. Periodicity is enforced by requiring nodal value equality on opposing
boundaries of the unit cell model. To illustrate this, consider the 3-D parallelepiped as
depicted in Figure 13. Boundary conditions for all degrees of freedom at the relevant nodes

on opposing faces of the following form must be applied

xi(0, Y2, y3) = X (y7, ¥2, ¥3), (98)
Xi(y1701y3) = Xi(yl:yg7 y3)7 (99)
Xi (Y1, Y2, 0) = xi(y1, v2, ¥3)- (100)

In practice, a simple linear algebra operation on the assembled stiffness matrix, [K], is all
that is required to impose these boundary conditions. Hinton et al. [83] provide an approach

that reduces the order of the stiffness matrix in accomplishing this task.

The periodicity assumption is crucial to the numerical procedure because it imposes the con-
dition originally specified theoretically in equations (55) and (75). The explicit dependence
of the equations on z; and/or y; are predicated on the definition of X in ®° and the periodic-
ity definition of Y. These conditions are tantamount to enforcing the assumption that each
given unit cell is embedded in an array of identical unit cells. Methods of enforcing other
types of periodicity conditions are discussed in Whitcomb [26] and Chung [84]. Though no
studies in the literature appear to investigate the merits of one set of periodicity conditions

over another, it traditionally understood that the periodicity breaks down near boundaries

60




| b’
. ) | g
b
y S
o W R
C,
~h
i X(a)=%(a)
X(b)=X(b) =123
X.(c)=X(c)

Figure 13. Periodic boundary conditions. Nodal values for x on opposing

faces are equal.
or regions of global discontinuities [37].

However, the assumption of periodicity is necessary in sophisticated approaches because it
indirectly accounts for the presence and interactions of the other unit cells. Without such
conditions, only dilute concentrations of inclusions are permissible, the correctness of the

present formulations notwithstanding.

Finally, to obtain a solution with rigid body modes removed, a zero displacement condition
must be applied arbitrarily in the body Y®. The effective properties are independent of the
location where the zero condition is applied. The relative magnitudes of the nodal values of
[x], however, are easiest to interpret when the zero condition is applied at a location that
exploits the cubic symmetry of the unit cell in Figure 13. The present study enforces this

condition at an arbitrary corner where any three edges intersect. Then, by virtue of the
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periodicity assumption, all corners also have zero displacement.

Once the corrector, [x], is determined at the nodes of the unit cell FE model, the effec-
tive property matrix of the model can be computed. In the next section, an approach for

computing the homogenized effective elastic properties of the unit cell is described.

2.7.3.4 Computing the Homogenized Property Matrix

The computation of the homogenized property matrix in FEM comes from a direct modifi-

cation of equation (86) which gives
Telm V.
(D=3 v DT+ [BXD (101)
e=1 0

where [D"] is the homogenized property matrix for the unit cell, ne is the number of
elements in the unit cell, V, is the volume of the element, Vi, is the total volume of the
unit cell, [I] is the identity matrix, [B¢] is the element strain matrix, and [x°] is the matrix
of nodal [x] values connected to that element. Summing over all the elements provides the
volume average over the unit cell with the added correction that [x¢] provides. The script e

in all of the terms denotes the micro element in Y.

The last term of equation (101) is the so-called corrector term which accounts for the presence
of the inhomogeneities in the microstructure. It also accounts for the interactions between
a given cell, Y¢, and the periodic array of cells surrounding it. This is what is referred

to earlier in section 2.7.2.1 as the misfit strain, in keeping with micromechanical elasticity

theories [85, 86].

The gradients of [x®] are computed at the integration points of the elements in Y'® where
they are numerically most accurate. For linear problems, the gradients at the integration

points can be averaged to provide a single gradient for the entire element. The gradient of
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[x°] in equation (101) is this average in the present context of elasticity.

It is of interest to note that the integral in equation (86), due to the division by the unit
cell volume, adds no dimensionality to the homogenized properties. This implies that the

effective property matrix is only a function of the relative lengths of inclusions and matrix.

The effective material property matrix is then employed in the global equations as the
material property matrix of the global element. It is therefore implied that each global
element possesses one unit cell representative of the microstructure in that global region of the
structure. After the global solution is obtained, the local gradients within the representative
unit cell can be computed. The next section describes the approach for computing this

“localization” information.

2.7.3.5 Computing the Perturbative Term

The perturbative term, ugl), is determined at the nodes of the body in Y®. The term is
a function of the global deformation gradient which varies from one global element to an-
other. Thus, if the gradients through the global body are not uniform, then the perturbative
displacements will also vary accordingly. This can also be interpreted as the local periodic-
ity assumption permitting variations of the microlevel information from one location in the

global body to another.

In the integrated multiple scale approaches of this study, the local information is computed
using the deformation gradient at the numerical integration points of the global element.
Thus, the integration points of the global elements serve as conduits of information through

which passes the macro information to the micro domain.
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In equation (76), the perturbative displacement was given as

ou
o = 2 00

Zj
The boundary conditions used to compute x¥ described in section 2.7.3.3 implies that the
constant of integration of equation (76), &51), is zero. Then, the nodal perturbative displace-

ments in a 3-D problem are given by

{ulV} = [X] [BY]  {u@} | (102)
{npor x 1} [npor X 6] [6 X ndy] {nd;}

where {u(")} is the vector of nodal perturbative displacements at the microlevel, [x] is the
matrix of nodal corrector values at the microlevel, [B9] is the strain matrix of the global
element for which the microlevel unit cell is being considered, and npor is the total number

of degrees of freedom in the FE mesh for the body in Ye.

Finally, the microlevel strains and stresses can be computed using equations (78) and (79)

from the perturbative displacements given in equation (102). In the next section, the specific

procedural steps are outlined.

2.7.3.6 Computational Procedure

The procedural steps for homogenization and localization of a linear elastic problem are
described here. It is assumed for simplicity that the global geometry possesses only one
microstructural representative unit cell. That is, the FE problem involves the solutions of
the governing equations over two meshes — the global body mesh and the local unit cell mesh.
Should the microstructure vary at different locations within the global body, it is understood

that the procedure must be extended to account for multiple unit cell meshes.

In the following steps, the dimensions of the matrices are provided for a 3-D scenario. The

matrix sizes can be changed according to the dimensional of the problem. The distinction
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between global FE quantities and local quantities are specified by script g or e, respectively.

Step 1.
Step 2.

Step 3.

Step 4.

Step 5.

Create the FE model of the global body in X*.
Create the FE model of the microstructural body in Y°.

Solve for the corrector x? * in the variational equation given by equation (77) or the
i g y

discretized corrector in equation (93):
Jye BT (D] [Blys Dd=f. (BT [Ddy*
(NS X 6] [6x 6] [6xngs] [nSor X 6] [ngor X 6] [6% 6]

The RHS terms are given in equation (97) and the symmetric boundary conditions

are imposed according to equations (98)-(100).

Compute the effective elastic tensor by substituting the correctors determined in

step 3 into equation (86) or (101):

(DM =3 vy [DC U+ [B] XD
[6 % 6] [6x 6] [6x6] [6xni] [nforx 6]

The result of this step is the homogenized material property tensor or homogeniza-

tion.

Solve the global problem for u§°) using the homogenized properties of step 4 subject
to boundary conditions and loads on the global body. The solution is obtained from

equation (85) or the discretized form given by

o (BT DY Bl {(O)=f. N {f}dx
[nder X 6] [6x 6] [6Xnds] {nd} [ngot % 3] {3}

(103)

The values of u§°> from this step give the traditional global solution analogous to the

conventional response of an homogeneous material.




Step 6.

Step 7.

2.7.4

Compute the average local strains at the desired discrete locations in X (usually at

quadrature points) via equation (78) on an element-by-element basis over Y'¢ which

is given by
{€9} (x,y) = (1] + [B] [X]) [BY] {u@}, (104)

where the script g and e are used to denote the FE strain matrices for the global
element and the local element, respectively. Note that the gradient term, ou©® [0z

or [B9] {u®}, is constant in y;. This means that for a given microstructural unit

cell, [BY] is a constant.

Compute the local stresses via equation (79) also on an element-by-element basis

over Y'¢:
{o®} (x,y) = [D°] (1] + [B°] [x]) [B°] {u} . (105)

The material property tensor [D] in equation (105) varies according to y;. This step,

together with step 6, completes the localization procedure that yields the local strain

and stress information.

Comparisons With Other Homogenization Methods

This section is divided into two subsections. The first subsection discusses the similarities

between AEH and classical homogenization approaches to develop an analogy to facilitate

the understanding of the AEH homogenization approach. In the second subsection, sim-

ple comparisons between the present homogenization approach and other homogenization

approaches are presented in the context of inplane plate stiffness.
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2.7.4.1 Classical Approach Analogy

There exists a rich body of literature in the understanding of effective properties of com-
posites [13,85-89]. Many so-called classical approaches employ analytical techniques which
place assumptions on the simply shaped geometry of the microstructure. The assumption on
geometry and isotropy of the phases permits the development of closed form approximations
for the effective properties. They consequently preclude considerations for complex substrate
geometries, such as woven fabrics, and are limited to spherical, cylindrical, ellipsoidal or other
types of simply shaped inclusions. Others depart from a classical methodology, and instead,
opt for numerical techniques or analytical methods derived from classical approaches to ac-
commodate the complex microstructure of advanced high performance composites [24-28,38].
Some approaches ostensibly claim causal links between the local and global behaviors [38]

much like the advocated AEH approach of this study.

However, there are three key distinctions that set the present AEH approach apart from
other computational homogenization methods. The first is the ability of the AEH approach
to provide homogenized properties for linear and nonlinear continuum BVPs. The second is
the capability of estimating local response at very small length scales within the framework
of seamlessly integrated multiscale niathematical derivations. Approaches such as Woo and
Whitcomb [38] provide a means of estimating global and local response but use kinematic
balances between length scales based on no mathematical development that inherently re-
stricts the schemes to the elastic regime. The third is the similarities between the AEH
approach and classical homogenization approaches. Analogies with classical approaches can
be drawn due to the rigorous equation development of the AEH approach, and this is the
topic of study in this section. Although it is beyond the scope of the present study to review
all classical homogenization approaches — elasticity, heat transfer, etc. — there are inherent
features over a broad range of homogenization schemes that are of interest for comparison

purposes with the present computational method.
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The comparisons and analogies drawn here are only to qualitatively examine the correctors
described in earlier sections in a classical mechanics context. The equation morphology of
correctors can draw parallels within the framework of the general theory of eigenstrains [85]
and, for a more specific case, Eshelby’s formulation [86,90]. The rigorous treatment of these
parallel observations is the subject of another investigation. The objective here is to loosely

show the physical inferences permitted by these comparisons for didactic purposes.

2.7.4.1.1 General Theory of Eigenstrains In a strict sense, an eigenstrain refers to
any general non-elastic strain such as thermal expansion, phase transformation, or misfit
strains [85]. Presently, in the context of the correctors [x] which is employed to effectively

“correct” the homogenized material properties by

D= 35 o D7) (1) + (B, (106

it is evident that computing the average stresses based on the effective elastic properties

yields

(09} =Y D () + (B D). (107)

In Mura’s general theory of eigenstrains, the fundamental assumption regarding linear elas-
ticity is that the total strain (e) is the linear superposition of the elastic strain (¢°) and the

eigenstrain (¢*), given by (for notational simplicity, the zeroth order script of the asymptotic

series is henceforth omitted)
{e} = {e} +{e}. (108)
The elastic strain is related to the stress by Hooke’s Law which gives
{o} =D’} = [DI ({e} —{'D)- (109)

By comparing equation (107) with equation (109), it is immediately evident that the second

strain component upon distributed multiplication in equation (107) is analogous with the
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eigenstress component in equation (109). The eigenstress is the constitutive counterpart of
the aforementioned eigenstrain. In the present context of heterogeneous materials, the eigen-
strain is precisely the misfit strain which accounts for the inhomogeneous stress distribution
that arises from the presence of an inclusion in a homogeneous matrix. As a consequence,
in keeping with the physical descriptions of Mura [85], the stress and strain fields are “dis-
turbed” from the trivial state in the AEH approach due to the fictitious eigenstrain (re:
corrector) in the homogeneous material that accounts for the additional inclusion phase and

the subsequent interactions between other inclusions.

2.7.4.1.2 Eshelby’s Formulation A more specific case of the eigenstrain interpretation
is seen by parallel comparison with Eshe_lby’s formulation for isotropic inclusions [86,90]. In
Eshelby’s original formulations, the inclusions and matrix are of the same material. The
premise of the approach is to equate the strain energy of a body in which a local region is
subject to inhomogeneous loads (inclusion) with that of an homogeneous body containing a
particular distribution of body forces to account for the inclusion. Misfit strains are those
that result from the body forces that account for the presence of the inclusion, thereby

disturbing the homogeneous matrix from its initial state and inducing a strain field.

The problem of an inhomogeneous material loaded externally by an applied field is decom-
posed into the sum of two problems. The first is that of a homogeneous material subject to
the same external loads as the original problem. The second is the homogeneous material in
the absence of external fields subject to a misfit strain (e*) that accounts for the presence of
the inclusion. The induced strain (€) caused by the presence of the inclusion can be obtained

by transforming the misfit strain field via the transformation given by
{e} = [E{e"}, (110)
where [E] is the so-called Eshelby tensor. The decomposition of the problem implies that
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the internal energies are additive. By comparing the energies of the various problems, the
true energy of the heterogeneous problem was derived as the sum of the internal energy of

the same problem with the inclusion removed plus an additional interaction energy. That is,
1
U=U,+ ‘2‘UINT7 (111)

where U is the energy of the heterogeneous problem, U, is for the homogeneous problem

where the matrix has been removed, and Uiyt is the interaction energy. The interaction

energy for a problem with applied tractions is defined by
Ut = /(t?Uz — tu7)dS, (112)
s

where S is the surface of the inclusion and ¢; and u; are the surface tractions and the
deformation, respectively. The script 0 denotes the fictitious problem where only the matrix

is considered in the absence of the inclusion.

In the AEH approach, in the context of FEM, the total internal energy is given as the sum

over Y€ of the internal energy in each element given by

U= V{2 D) (i) + [Bx]) {2}, (113)

# elm

where the ellipticity and symmetry of the terms have been used. In a more abbreviated

form, equation (113) can be written as
U = UD + Ucorr, (114)

where the energy components are self-evident by comparison to equation (113). Via non-

rigorous manipulations, it can be shown that equation (114) becomes
U= (UD + Um) - (Um - chorr)y (115)

where Uy, is a “catch-all” term whose value can be tuned by comparing with equation (111)

such that U, = Up + Uy. Then, it is clear that the interpretation of the misfit strain is

applicable to the AEH approach.
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Clearly the derivation for the corrector of the present AEH approach is different from that
for the interaction energy in Eshelby’s formulations. But the additional interaction energy
shows precise parallels in the interpretation of the equation forms and lends credence to the
“corrector” interpretation of x in equation (77). This superficial comparison of the equations
is meant only to reveal the additive nature of the corrector and show its consistency with

interpretations of classical homogenization approaches.

Moreover, other computational approaches such as those defined, for instance, by Foye [24,
25), Whitcomb [26], Gowayed and Yi [27], and Woo and Whitcomb [38], are not as easily
comparable to classical approaches. Though the mechanics of material schemes employed
therein are more intuitive from a force-balance perspective, it is precisely for this reason they
cannot be extended to the nonlinear regime and show the rigorous coupling across length

scales.

In the next section, quantitative comparisons are undertaken to show the agreement of the
AEH approach with other numerical and analytical homogenization approaches for plate-
like composites in linear elasticity. Though the AEH approach possess features not found in
other computational homogenization approaches, it is still expected that for linear problems

agreements with existing results can be obtained.

2.7.4.2 Numerical Comparisons

In this section, quantitative comparisons are presented between several homogenization
methods. The homogenized inplane stiffness of a woven fabric plate structure is used for
the comparison. The homogenized results from the AEH approach are compared with the
so-called Strain Energy Balance, Finite Element Plate Approximation, and Area Averaging
approaches. In addition, two analytical methods due to Ishikawa and Chou [91] for the

so-called mosaic and crimp models are used to further verify the results with well-accepted
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theories for woven fabric composites. The purpose here is to demonstrate the different
effective elastic properties of composite materials obtainable using other homogenization
methods and to show the definitive localization feature of the AEH approach. The distinc-
tion between the present work and other homogenization approaches, therefore, is illustrated
quantitatively. The results presented in this section are directly from a published paper [59]

and the associated thesis [84] on the effective homogenized elastic properties of woven fabric

composites.

The present considerations are for general composites and therefore focus on methods which
can homogenize, say, woven/undulating stiff cylindrical inclusions embedded in a soft matrix.
In light of the scope of this section, homogenization approaches which can estimate effective
properties of complex geometries are considered. In principle, these approaches are similar
to classical mechanics approaches such as those described in Refs. [85,86] in that only ho-
mogenization is feasible. This illustrates the key component of AEH absent in other existing
approaches — AEH possesses the ability to establish a causal link between the continuum

BVPs across the relevant length scales.

A full comparative study of selected homogenization schemes was conducted using the finite
element meshes of the microstructure depicted in Figures 14(a)-(j). .The study compares
only the inplane Young’s modulus because of the limitations inherent in using the plate
approximation (see Chung [84]). Figures 15(a)-(b) show the moduli for the mosaic and
crimp models and compare the results from the four homogenization schemes. The mosaic
and crimp models are theoretical idealizations of the woven geometry of fibers used in woven

fabric composites. They were originally proposed by Chou [92] for analytical methods.

Values for n, used were 2, 3, 4, 5, 10, and co. It is clear by observation of these geometries
that they are implicitly 50% fill tows by volume and 50% warp tows. The longitudinal (fill)

and transverse (warp) material properties of the fiber bundles are representative of an epoxy

graphite composite in Table 1.
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(a) Mosaic model, ng=2 (b) Crimp model, ny=2
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(f) Crimp model, n,=4

(g) Mosaic model, ng=>5 (h) Crimp model, nyg=>5

(i} Mosaic model, n,=10 (§) Crimp model, ny=10

Figure 14. Finite element meshes of mosaic and crimp models for various

weaviness parameter, ng,.

The results indicate that the AEH approach for linear elasticity yields results within the
bounds of the analytical mosaic and crimp models. Furthermore, the AEH numerical re-
sults agree well with the other computational homogenization approaches. These results are
indicative of the good agreement expected for other classes of linear problems. Nonlinear
problems typically can be decomposed into a series of smaller linear problems in numerical
implementation. In light of this, the mathematical consistency of the formulations further

suggest the viability of AEH for treating problems in the nonlinear regime.
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Figure 15. Comparisons of inplane moduli for the mosaic and crimp models

for varying weaviness parameter, 1/n,.
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Table 1. Constituent elastic material properties for epoxy/graphite

composite.
Property | Longitudinal | Transverse
E, (GPa) 113.0 8.82
E, (GPa) 8.82 8.82
E, (GPa) 8.82 8.82
Vzy 0.0235 0.495
Vys 0.495 0.495
Vi, 0.0235 0.495
G., (GPa) 4.46 2.95
Gy. (GPa) 2.95 2.95
G.. (GPa) 4.46 2.95

Consider now the global problem depicted schematically in Figure 16. The FE model of
this geometry is depicted in Figure 17 with 2,541 nodes and 2,000 elements. Two types of
microstructures are emploved in this section. The first microstructure is representative of
an orthogonal non-woven fiber composite depicted in Figure 18 with 1,917 nodes and 1,472
element. The second model is representative of a plain woven fabric composite depicted in
Figure 19 with 1,819 nodes and 1,408 elements. Constituent material properties for this
example are listed in Table 2. Each material component is assumed isotropic. The objective
here is to compute both the global deformation and stresses while simultaneously computing
the approximate local stresses at the element locations depicted in Figure 16. The stresses
are approximate due to the homogenization assumption which smears the inhomogeneous
medium, simulating homogeneity, and the subsequent localization which uses the solutions
obtained from the smeared behavior. Element no. 1,110 is located in a region that is
expected to be of lower overall stresses than element no. 1,990. The bar will experience

stress gradients due to the three-dimensionality of the problem. The dimensions of the bar

are2mx 1m x 1 m.

I5)




Element #1990

-

Element #1110

)

macro

(

Figure 16. Bar twist problem

bar twist problem.

)

Figure 17. FE model of global (macro

76




N\
0”//””//"

S
PR e e
.”///A‘N”‘

AV NN

AR A
NN\ .WV..”/””

L AN

Figure 18. FE model of (micro) orthogonal non-woven fiber composite.

(a) 2D plain weave composite

) Matrix component

C

(

(b) Fiber component

micro) FE models.

(

Figure 19. Plain weave composite

7




Table 2. Constituent properties.

E (GPa) | G (GPa) | v .
Epoxy resin 3.5 1.3 0.35
E-Glass 72.0 27.7 0.30 .
Ti-metal21-S | 112.0 41.8 0.34
SCS-6 393.0 157.2 0.25

For the 3-D orthogonal non-woven and the 2-D plain weave composites, the elastic material

tensors are computed. For the orthogonal non-woven fiber composite, the elastic tensor is

given by
21.1
5.3

5.3
[Dh] orthog = 0

0
0

53 5.3

21.1 3.3
5.3 21.1
0 0
0 0
0 0

For the 2-D plain weave composite, the elastic tensor is given by

BE

5.0

8.3
0
0
0

(D] eave =

50 &3

123 5.0
5.0 28.5
0 0
0 0
0 0

0o 0 0 |
0 0 0
0 0 0 \
(GPa). (116)
34 0 0
0 34 0
0 0 34
0 0 0
0 0 0
0 0 0
(GPa). (117)
33 0 0
0 33 0
0 0 69

The corrector provides a measure of the heterogeneity of the microstructure, namely, the

interaction between the inclusion and the matrix. In Figures 20 and 21 the “mode” shapes

are illustrated via isocontours where the grey-scales represent the magnitudes of the corrector

term.

78




26103 |_J A
aataut Frnge aataut Froge
M 41601 G 810 . u 160" G ard
9

Feng .
X M 0 @NI in 0 G
detaut Detormason etaunt Daformanon

Min 0 @Nd
Max 41601 GRG 813 Max 4.16-01 QNI 813

(a) Mode 11 (b) Fiber cut-out in mode 11

27802

5.0

cataur Frege

Max £ 1601 @Na 212
3

Oetaut_Delormator
Max 41601 NG 1405 Max 41637 @NC 1405

(c) Mode 22 (d) Fiber cut-out in mode 22

41601
38901
3610t
230.0
301 §
27801
25001
22201 )
1940t

16701

1290 |

vier )

f—‘ vuor |

w2} 83462 fr_J
55502 E sssczl |
2m02] 2102
3508 L] A 33508 ||

getaut Forge owtaut Froge

Max 41601 PN 1060 Max 41601 PN 1060

M 0 ONI9 x Mo 0 QNIS

Gelaun Oslormaton Ge'aut Deformaton -

Mac 4 1601 GRa 1060 Max 41601 g 1060

(e) Mode 33 (f) Fiber cut-out in mode 33

Figure 20. Corrector mode shapes for orthogonal non-woven microstructure
(magnified 10% of model scale).
79




s
3380
31240
2.86-01
2.60-0: -
2340
20801 N
razar 1)
15601
13001
30 N
10601
77902 u
b 3
swoe i} sr02| |
26002 | ! 20002] !
amcs| | N 55908 [
aetaun Frings aetaut Frnge -
A~ Max 39007 (N3 813 M Max 32001 @™o 1485
M Min 0 QN9 Min 0 @Na 9
Getaur. Detormason 0etavt Detormanon
Max 3900% @Na 1405 Max 3301 No 1425
(a) Mode 12 (b) Fiber cut-out in mode 12
39001 390-0t I_l
I 6401 iad 3.64-01
3301 33801
31200 3o
288t 2 8601
26001 26000
2.34-00 2M0
20801 20001
18201 Le<t
1560t 1,56-C1
13001 | 1300
roeor L] youo
i
. i
no2 ;__‘ 7.1902
s9e2i | sweo
2w L{ 2ece2l |
6308 | | 63308 [
cotau= Ernge aetaus Frage
-~ Max 39001 (N 780 Mas 390L1 @No 780
o . Min 0 @ 9 M 0 @M1
Getaur Deformation Geraur Datormanon
Mas ) 9001 (PG 780 Max 390-C1 40Na 780
l
350011 25001
36400 ~ 36401
I 33601
2o 21200
. 26601 26601
25001 26001
22400 23401
2080t & 208-0t
ey 1ar0r
156Ct ¢ 15601
13001 1.3001
> 1540 | 16401
S -/; L Tmce ymozl ]
t wert | e
. )‘// . / sro02 L | 51902 'L_‘
. Nt . / 26022 | 260001 )
N . a4 55928 |, A 55900 U
B aear Erege Selaun Frnge
= Mu ) e T0EC M 39091 @Ng 1060
A~ progarent- x M § @Rod
Geraut Dwarmason
M 39001 QN 106C -

(e) Mode 13

0w’ opmanon
V)30 PN 1060

(f) Fiber cut-out in mode 13

Figure 20. Corrector mode shapes for orthogonal non-woven microstructure

(magnified 10% of m

odel scale){continued).

80



2. R
aatault Fange astaut Fringe
Max 49501 @% 9 Max 4 9301 NG 880
Min 0 @Na 367 x M 10607 (N0 622

Cotavt Detormason oataust Detormation
Ma 49901 GNo B Max 4 99-01 @GN0 BED

(a) Mode 11 (b) Fiber cut-out in mode 11

63208 ..
eta Frnge cetau Frnge
Max 4 1461 PG T4S Hax 41501 Na 145
x M € @G 367 x Min 6.24-35 (N 64
Ge'aut Deormason etautt Detormancn
M2 3 140t BN TS Max 41401 PN 145

(c) Mode 22 (d) Fiber cut-out in mode 22

Getaut Fange .
M2 49301 QNa 657

2~ X hain 1 24 G7 Na 685
Gataut Detormaren Getaut Dtormanon
Max 4 9901 PN 657 Mas 4.99-01 PG 657

(e) Mode 33 (f) Fiber cut-out in mode 33

Figure 21. Corrector mode shapes for plain weave microstructure (magnified

10% of model scale).

81




!
astault Fringe:
Max 4 140) @No 324
X Mo t B4-02 @ 724
stauit Detormaton .
Max 31461 @NC 524

Max & 1401 QN 524

(a) Mode 12 (b) Fiber cut-out in mode 12

detautt Fenge

i 0 QNG 367
Galaut Detormascn
Max 4140) @Ne 9% Max 4,141 NG 996

(c) Mode 23 (d) Fiber cut-out in mode 23

{4 -

J ass2l
37082
2&&&2}

aneon |} 12006 ]

dataut Fringe g

Max 4 26-G1 QNG 244 Max 4 28-0) @Na 167

x M 0 QNG 367 x Mn 12006 @Na 769
getaut Deformaton

Ge'aut Dstormanon -
Max 4 2601 @ 167 Max 42801 @M 167

(e) Mode 13 (f) Fiber cut-out in mode 13

Figure 21. Corrector mode shapes for plain weave microstructure (magnified

10% of model scale)(continued).

82



! mode shape.

In Figure 20(b) the fibers extend in the z-direction corresponding to the X
The fibers ezpand in the 11-direction as a result of its stiffer behavior. This is in accordance
with equation (77) where the “loads” are defined by the magnitude of the property difference
across the phase boundaries. In this case, the stiff fiber has higher elastic constants which
“loads” the softer matrix in the 11-direction. In the event where the matrix is of a stiffer
elastic material than the inclusion, the difference in properties is negative indicating that
the matrix “loads” the fibers. In either event, the loading gives the appearance of the stiffer

material expanding while the softer material contracts. Analogous observations can be made

for Figures 20(d) and (f), and Figures 21(b), (d), and (f).

Noteworthy in Figures 20 and 21 are the periodic shapes of the modes. Each unit cell can
be placed adjacent to identical cells in all three dimensions. This characteristic reflects the
Y-periodicity, or the translational symmetry of the unit cell. They appear to fit seamlessly
together, as in a jigsaw puzzle, making a continuous array. The symmetry was enforced

mathematically by application of the periodic boundary conditions.

The global bar twisting solutions are illustrated in Figures 22(a) and (b) for the non-woven
and woven microstructures, respectively. A line load of P = 10 kN/m is applied counter-
clockwise around the edges of the bar’s tip. The associated Von Mises stresses and strains
are illustrated in Figures 23(a) and (b) and Figures 24(a) and (b). The isotropic effective
properties of the non-woven microstructure yields isotropic macro behavior of the bar. The
plain weave microstructure is transversely isotropic, and this behavior is reflected in Figures
23(b) and 24(b) at the tip where the respective stresses and strains are not distributed
uniformly around the perimeter of the cross section. The stresses and strains at the bar tip

with the non-woven microstructure, however, are distributed evenly.

In addition to the standard global behavior, which is obtainable using conventional elasticity
theory, the present approach provides a means of estimating the microstress response. The

microstresses are computed at the two locations indicated in Figure 16. The first location at
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element no. 1,110 is near the center axis of the bar which is the region of lowest stress in the
cross-section plane. The second location at element no. 1,990 is closer to the outer surface
of the bar where it is expected to experience larger stresses. Although the microstresses
can be approximated anywhere, the two locations are chosen presently to demonstrate the
differences in microstresses using the AEH approach. In contrast, a similar problem involving

a high resolution mesh would require significant modeling effort and solution time.

The microstress contours for the appropriate geometries are depicted in Figures 25 and 26.
The differences in the stresses are evident between Figures 25(a) and (c) in the legends
to the right of each figure. The stresses in Figure 25(c) are clearly greater than those in
Figure 25(a). Whereas the median microstress at element no. 1,110 is 8.115 Pa, the median
microstress at element no. 1,990 is 53.9 Pa. Analogous observations can be made for their
respective fiber cut-outs in Figures 25(b) and (d) or for the plain weave microstructure in

Figure 26.

The average of the microstresses over the unit cell gives the global stress because the Y-
periodic correctors cancel when volume averaged in equation (79). This is what gives the

AEH approach mathematical consistency between scales.

Finally, although the present discussions have not fully exploited the microstructural infor-
mation obtained by the present approach, further studies can be conducted to interpolate
greater refinement of microlevel detail. Figure 27 depicts a possible area of investigation to
extract stress details at smaller scales by identifying and manipulating stress information
inside the cell. This topic can be treated in the context of scientific visualization in future

research.

In contrast to a the linear elastic problems considered in this section which involves a sin-
gle step of homogenization and/or localization, time-dependent problems may require re-

peated homogenization. This is especially in cases where the material properties of the
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Figure 25. Approximate microstresses for non-woven microstructure (in Pas-

cals).

constituents change with time. In the next section, a linear form of a time-dependent prob-
lem is considered in the viscoelastic regime where the BVP is a function of time due to the
time-dependence of the constitutive equation. However, despite the unchanging nature of

the linear material properties, the global problem still requires the rehomogenization of a
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limited number of quantities due to non-intuitive effects that occur when time-dependent

multiple term constitutive models are homogenized.
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Figure 27. Additional microstress details by further refinement and inspec-

tion of the microstructure.

2.8 Conclusions From the Literature Review

Four primary conclusions can be drawn from the literature for AEH: (1) computational
methods for linear and elastic engineering problems are well established and based on math-
ematically consistent derivations found in the mathematics literature; (2) some problems
originally posed and discussed cursorily in the mathematics literature, such as in Bensous-
san et al. [29] and Sanchez-Palencia [39], have yet to be fully investigated, understood, and
demonstrated /proven for practical situations; (3) computational methods for inelastic and
nonlinear mechanics remain fertile areas for growth and novel developments, and (4) despite
the ostensible label of multiscale. AEH is traditionally applied only to scales where con-

tinuum equations apply. and no efforts show applicability to scales smaller such as at the
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atomistic level.

It is clear that AEH remains an active area of research for computational mechanics. In the
next section, the AEH method serves as the framework for a new method of linking atomistic
scales to continuum scales. To date, no documented efforts have shown either theoretically

or in application that this is possible.

91




3. Formulation of a Multiscale

Atomistic-Continuum Homogenization

Method

3.1 Overview

A large amount of interest has recently focused on the multiscale problem involving atoms
and continua. It is widely accepted that many effects on the continuum germinate at the
atomic level. Events such as fracture, fatigue, and inelastic material response can be traced

back to the evolution of the atomic structure of the material.

Methodologies for linking a continuum to an atomistic domain can be found in the literature
as early 1971 [1]. Finite element methods were later employed in Mullins and Dokainish [2]
using a numerically decoupled domain approach with spatially overlapping atomistic and
continuum regions. A review of some of these methods can be found by Cleri et al. [3]. Among
these early analytic and computational studies, frequent issues regarding the treatment of the

interface arose which were primarily handled through creative use of kinematic constraints.

More recently Tadmor et al. [4] developed an entirely FE-based formulation, the so-called
quasicontinuum method. Similar efforts were made through the so-called handshaking or
coupling-of-length-scales (CLS) method by Broughton et al. {5] by increasing the atomic
resolution via the tight-binding (TB) method. And the dynamic problem was studied with
a generalized scaling approach in coarse-grained molecular dynamics (CGMD) by Rudd and

Broughton [6] to better handle the propagation of waves through the atomistic-FE interface
and the FE far field.
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Maultiscale methods, such as those previously described, have traditionally been limited
mainly to localized regions of interest. For example, the applications to which these methods
have been applied involve small sets of dislocations and cracks and very few limited analy-
ses of their mutual interactions. The localized regions on which these simulations are run
typically span, at most, several microns. The limiting assumption in these works is the use
of kinematic constraints to tie together the equations and disparate length scales. Driving
the resolution of the discretized continuum finite elements intrinsically restricts the size of
the continuum and leads to smaller overall dimensions of the problem which can only be
overcome by large use of computer resources. Furthermore, the kinematic constraints on
the atoms and continua lead to incompatibility issues arising at the interface such as ghost

forces [7].

The asymptotic expansion homogenization method has been widely studied by applied math-
ematicians for many years. Numerous authoritative texts on the basic theory can be found in
the literature, for instance, by Bensoussan et al. [29], Sanchez-Palencia [39], and Bakhvalov
and Panasenko [93]. And despite the prolific research in the field, no attempts have been

documented for extending the theory to atoms.

In this part of the report, a computational framework for homogenization of the atomistic
problem is presented. Using two concurrent domains, one for the macroscale continuum
domain and one for the atomic scale domain, concurrent self-consistent sets of equations are
derived. Atoms in arbitrary configurations and structures of unlimited size are permitted.
Through the asymptotic expansion homogenization technique, a set of hierarchical equations
are derived based on hyperelasticity. At the local level, the atomistic equations are used under
the assumption of the harmonic approximation to generate the effective properties needed
to solve the effective global level equations. The Cauchy-Born rule [12] is applied to the
atoms to enforce the gross deformation of the continuum on the atoms. This circumvents
the need to apply kinematic constraints by making use of the weak averaging properties of

homogenization and causes the small scale equations to be linear.
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The contents of this part are as follows. In section 3.2, the conventional continuum equations
are shown eventually leading to a variational form based on the principle of virtual work.
Then, in section 3.3, the multiscale equations are developed resulting in two sets of equations
which govern the local and global length scales. By introducing the atomistic potential in
sections 3.4 and 3.5 the details of the atomistic formulations are presented and are cast
in a variational form for use in the multiscale homogenization method. In section 3.6, the
derivatives of the atomistic energy potential needed to complete the derivation of the method
are provided in a general form. In section 3.7, 1-D demonstrative examples are worked and

shown. Closing remarks are discussed in section 3.8. Additional details of the derivative of

“the Tersoff-Brenner type II potential are shown in the Appendix.

3.2 Continuum Formulations

This section describes the kinematics, stress definitions, and linear momentum conservation

laws needed to develop the homogenization method from atomistic principles.

3.2.1 Kinematics

Consider an open set V in R3 that deforms to the configuration v in R3. Points in V' are’
denoted X = (X, X, X3) € V and are called material points, while points in v are denoted

x = (z1,Z2,73) € v and are called spatial points. The deformation is a one-to-one mapping

through ¢ so that z = ¢(X). The deformation gradient is defined by

_ do _ 0 (118)

= 7o = 79 = VoX, F%j—an—-a"‘XJj,

where Vg signifies the gradient taken with respect to V. The determinant of F' is termed

the Jacobian and is defined by J = det F. The right Cauchy-Green strain tensor is defined
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C =FTF, (119)
and the Green strain tensor is defined by

E=-(C-1) (120)

L
2
3.2.2 Stress and Equilibrium

The material representation for the conservation of linear momentum is defined by
Vo-P+1£=0, (121)

where P is the first Piola-Kirchoff stress tensor and fj is the body force per unit of undeformed

volume. In rate form, it is given by
Vo-P+1,=0. (122)
Using the principle of virtual work, equation (122) can be rewritten as
/V (vo : P) SudV + /V f, - dudV =0, Véu, (123)

where du is the virtual displacement. Then, using the definition for traction with respect to

the undeformed body, equation (123) can be rewritten as

/P:VoéudV=/ f:o-éudA+/fo-<5udV. (124)
v ov 1%

We invoke the notion of hyperelasticity by assuming that the atomistic potential, W, which
is a function of the atom positions, can be expressed in terms of strain. Intrinsically, this

assumes that the strain energy density (or the free energy at zero temperature) is equivalent
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to the atomistic energy potential. Following classical continuum mechanics, one can then

define the first Piola-Kirchoff stress as

ow ow
and the first Lagrangian elasticity tensor as
o*'w  oP o?W O0P;;
C = e—— T e iikl = == Y . 12
OFOF ~ OF’ Ciju 8F;0Fy  OFy (126)

A relationship is needed between stress and strain. From equation (126), one can see that

in hyperelastic materials, P is related to F through
P=C:F, P = ijlekl, (127)

where

F = 0u/0X = v /0X, (128)

and where 11 = v denotes the velocity.

Substituting equation (127) into (124) and using (128) yields

/ C: (Voou® Vov)dV =/ to - SudA +/ £, - dudV, You, (129)
1% v 1%
and the equivalent indicial form,
Odu; Ov
/ Cijki o 7%, 3;1 dV = / to,6u;dA +/ fo, 0u;dV. (130)

This is the virtual work equation associated with hyperelasticity. The two-scale approach is
described next. It is devised so that traditional finite element continuum equations can be

solved in the coarse scale and atomistic equations can be solved in the fine scale.

3.3 Homogenization

The homogenization framework enables the weak coupling of the continuum to the atoms.

By taking the limit of the time-independent asymptotic expansion parameter € — 0, we
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exploit the weak convergence properties of the scheme so as to decouple the length scales.
Hence the term “weak coupling.” At the fine scale, the domain contains only atoms with
periodic conditions prescribed on the boundary and all atom displacements are measured

relative to a fixed point in the local frame of reference.

The homogenization method is based on the assumption that two scales exist - a coarse
scale and a fine scale. Coordinates in the coarse material scale are X = (X3, X», X3), and
those in the fine material scale are Y = (Y1,Y5,Y3). Likewise, the spatial coordinates are

the lowercase analogues. The two scales are related by the scale parameter

Y = = (131)

Therefore, we assume that the ratio of scales remains the same before and after deformation.

The aim is to obtain two sets of coupled equations. The asymptotic series assumption

decomposes the displacements as

uX) = ul¥X)+ull(X) (132)
= ull(X) + eultl(Y), (133)

where u!¥ represents the displacement at the coarse scale and ul!! represents the perturbed
displacements due to inhomogeneity at the fine scale. Square brackets denote the order of

the term in the asymptotic series. The representation of the total displacement at the fine

scale is given by Takano et al. [76] as

1 micro
“u(X) = um(Y) 130

= Ful(X))Y +ul)(Y).

The variable X in equation (134) is a fixed value with respect to Y. That is, the deformation
gradient of a point in the coarse scale gets mapped onto a fine scale grid. This point is

typically a quadrature point in a finite element sense.
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The time derivatives are analogous to equations (133) and (134). They are given as

uX) = v(X)
= vIO(X) +evl(Y), (135)

ﬁmicrO(Y) — vmicrO(X)
= FEIX)Y +vH(Y). (136)

Substituting equations (133) and (135) into (130) yields
/ ¢ [Vx (6u(X) + e6ul)(Y)) @V (vIO(X) +evil(Y))] dV
v
= / (6ul(X) + edult(Y)) - todA
ov

+ / (6ul(X) + esul(Y)) - fdV,  Véul’, sul!
1%

(137)
Note that by use of the chain rule and equation (131),
oY
Vx¢(X,Y)=Vx¢+ ‘éivyé
1 (138)
= Vx¢ + Equb
Therefore,
Vx (0%(X) + eu¥(Y)) = Vxul(X) + Vyull(Y). (139)

Using equation (139) in (137) and taking the average over Y gives
/ T%;I / C :: [(Vxul(X) + Vyoul(Y)) & (VxvI(X) + VyvI(Y))] dYaV
v Y
- / (6uP(X) + edulll (V) - fodA + / (5u¥(X) + c6ull(Y)) - v, (140)
av 1%

véul, sulll,

Then, in the limit as € — 0, equation (140) is satisfied only if the following two equations
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are satisfied,

1
= C : [Vxdul(X) ® (VxvI¥(X) + Vyvli(Y))] dYdV

= [ ul(X)-t,dA+ / sul(X) - fodV, v sul®,
2A% |4

|’;17| / / C:: [Vysul)(Y) ® (VxvO(X) + Vyvi(Y))] dYdv =0, Véulll (142)
vJY

By recourse to the finite element method, the solution of equation (141) is straightforward
assuming C and v are known. It is then evident that due to the dependence of (142) on

vl%, equations (141) and (142) are coupled and must be solved concurrently.

In the next two sections, a method is first shown for solving equation (142) for vill, then in
the following section, the formulation that enables the atomistic information to be fed into
equation (141) is derived. Then by linearizing the equations, a Newton-Raphson scheme can

be employed to achieve the needed concurrency.

3.4 Atomistic Equation

Distinct and distinguishable atoms are assumed to reside in the local level cell. By the
Cauchy-Born rule [12], at a point X, F(ul?) is assumed to give the energy minimizing
configuration of the atoms. For simplicity, we assume that the atoms are arranged in a

lattice.* Then, the positions of the atoms Y are given from the lattice coordinates m by
Ym=me;: meL L=ZZ<N, (143)

where e; are the primitive translation vectors and N is the integer multiple of atoms con-

tained in the unit cell. To avoid confusion in notation, atom labels are noted in parentheses

*Note that there is no restriction to perfect lattices. In fact, by use of computers, arbitrary arrangements

of atoms can be considered as long as the assumption of the Cauchy-Born rule still applies.
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henceforth and are not subject to the conventional summation rules associated with indicial

notation. The displacement of the atoms are
Qm): meL. (144)
Upon deformation, the new positions of the atoms are given by
Y(m) = Y (m) + Am)- (145)

The deformation gradient is defined by

_ Oy
F=32 (146)

The vector separating two atoms i and j in the reference configuration is given by
Rej) =Y — Y, (147)

where Y ;) denotes the position of atom j and Y{; the position of atom i. The vector
separating two atoms in the deformed configuration is given by
Iij) = Y(G) — Y- | (148)
Then the Cauchy-Born rule can be stated in a more precise manner by
re) = FY() —FYg

(149)
=FR)-

For the energy associated with the deformation of the atoms, we use the so-called type II
parameterization of the Tersoff-Brenner potential [94,95]. It takes the form,
1
W= —[Ey(Y +a) - E(Y)], (150)

N

where W is the energy density of the frozen system, n, is the number of atoms, and Ej is
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the binding energy given for a pure carbon system by

Eyr) = > > [Va(rap) = BVa(rap)],

i j(>9)
= 1
B = 5 (Bu+Bun),
Va(r) = f(z)g(r)ll?)(e) o~ VISR
.. (e)
Va(r) = f"?&—%se—\@ﬂ(r—m,
4
1, r < Rl
m(r—R1]
fap(r) = S %{1 + cos [%rﬁ%)l]}’ RY < r < R®
0 r > R®

-

\

-5
Buy = [1+ > GOum)fw (T(ik))} :
k(i)

c ¢
Go) = a°{1+ﬁ_ d2+(1+cos0)2}’

o o

with the constants given in Table 3.

Table 3. Parameters for Tersoff-Brenner potential.

R® | 1394
DE) | 6.0eV
S 1.22
B 2.1 A
) 0.5
RO 1.7A
R® 2.0 A
a, | 0.00020813
c? 3302
d? 3.52

(151)

(152)

(153)

(154)

(155)

(156)

(157)

Given that the energy can be written as a function of the atom displacements, equation
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(142) can be expressed in a form conducive to atom representations. We equate vl to the

rate of atom displacement and attempt to solve the equivalent form

9 C.. avl[cl] — _acijkl aUIE:O] (158)
oy, oy, T oY; 90X,

under periodic boundary conditions. The solution to equation (158) is found as the zero of

OR in the equation

R = Kvlll - D . vvli(x), (159)

where K is the n, x n, Hessian and is given by

W

where q is the vector of atom displacements of size 3n, (in three dimensions), and D is a third
order unsymmetric tensor that is obtained from the first derivative of the Euler-Lagrange
equation with respect to the local deformation gradient, given by

W
D= ~3OF (161)

The size of D depends on the dimensionality of the problem. In three dimensions, it can be

expressed as an n, X 9 matrix where 9 corresponds to the number of independent components

of F.

Under the Cauchy-Born hypothesis that the atomic primitive vectors deform homogeneously
according to the gross deformation of the continuum, equation (159) is a linear equation.
That is, the atom positions needed to compute K are determined solely by Vovl® and is
independent of v[.* However, if necessary, a mixed strategy can be used incorporating

molecular dynamics to compute the true energy minimizing atom configuration at the fine

scale.

*This is not to say that vl and vl% are independent. The distinction being made here is between

interscale and intrascale coupling. The coupling is interscale but not intrascale.
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3.5 Multiscale Equation

Once equation (159) has been solved for v, the remaining task is to formulate a tractable
global scale boundary value problem. The key distinction between this investigation and
conventional continuum formulations, such as hyperelasticity, is the conspicuous incorpora-
tion of vl!l, a fine-scale/atomistic quantity, in the global scale equations, and the definition

of the material property tensor completely in terms of atomistic variables.

We return to equation (141) recognizing that vl is now known. Incorporating the definition

for the first Lagrangian elasticity tensor from equation (126) yields

IYl/ / parp © LVx0u(X) @ (Vxvi(X) + Vyvli(Y))] dyav

(162)
= / oul(X) - todA + / sul(X) - fdv, Vv oul’l.
2% 14

Then using the definition of F in equation (118) and assuming a first order Taylor series

representation for the time derivative gives,

IYI/ / ~par  (Vx0u(X) ® Vxv(X)) dyav

= 5u (X) - todA + / sul(X) - fodv

IYI/ / 9Fdq : (Vx6u(X) @ vIH(Y)) dvav, v 6ull.
(163)

The solution to equation (163) yields vI% that takes into consideration the effect of the atoms.
It is noteworthy that the last term is zero when the energy distribution over Y is constant,
i.e., when the atom arrangement forms a perfect lattice. This reduces the problem to a
classical harmonic approximation where the first Lagrangian elasticity tensor is assumed to
model the material behavior. In equation (163), the last term serves as a corrective force in
regions of highly energetic atoms, i.e. non-locality regions, to account for defects and lattice

inhomogeneities. Note also that the atomistic energy density and its derivatives intrinsically
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account for invariance properties of the atoms. For example, by switching the positions of

two atoms of the same species, the energy remains constant.

3.6 The Euler-Lagrange Equations and the Hessian

In this section, the analytic forms of the Euler-Lagrange equations and Hessian are derived
for a general potential. The nontrivial algebra typically needed to obtain equations (160)
and (161) for the specific case of the Tersoff-Brenner potential are shown in greater detail in
the Appendix, and only general forms are derived here. The Euler-Lagrange equation is the
first derivative of the Lagrangian with respect to the degrees of freedom. In this problem,
the Lagrangian is the negative of the atomistic energy density. The Euler-Lagrange equation

is therefore given by

ow

- aq(m)
%, (164)

" 1 0Q(m)

and using the chain rule for derivatives, it is

_ 1 0,

712 0q(m) (165)
1 <6Eb Br(z-j) + 3Eb 6r(ik) + aEb 8r(jk))
Orij) OQum)  OTiry 0Qm) Oty OQ(m) )

Tg

The Hessian is obtained by taking an additional derivative of the Euler-Lagrange equations.
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|
Specifically, we again make use of the chain rule to obtain

K= %%
. 99()9q(m)
_ 1 B
" N 0Q(n)0G(m)
_ l [ OEy <3r(ij> ® 0r(z'j)) OB (3r<ij) ® 3r<ik))
Or;0re)  \0dmy  Odmy/  Orepdrary  \0qm)  0Qm)
O*E, <3r(,k) 6r(,-j)) + O*FE, . <8r(z-k) 2 8r(,-k)) (166)
3r<zk)3r(m 0dm)  O0Amm)/  Orandrary  \94m) — Oq(m)
8’ Ey (3r(zk> 5r<jk)> OB (3r<ij> ® 3r<jk)>
T Frondrgy - \0dm - daum ) T Oadrge  \0dw) - Oam)
0By (ar(ak) ar(ij)) N OBy . (ar(ik) ® 3r<jk))
Orn0ru)  \0am)  0dmy) OranOrgry  \0qm)  OQm)

OBy . (ar(ﬂc) o OTH) )}
OrGnOra)  \0am)  Odm)

Second derivatives of the inter-atom vectors are zero, i.e.,

&%r(ij) 52
0q(m)0q(n) O () 0Q(n) ( ) @) (@) T 9 )) (167)

=0 Y(mn). (168)

Next, the appropriate right hand side expressions are derived for equation (159) and (161).

This involves the use of the chain rule again to obtain

62W _ i l: 62Eb B (31‘(13) ® 31‘(1']-)) + 32Eb . (ar zk) ar ,ﬁ)
8q(m)6F n ar(.,])ar(,]) - OF Bq(m) or ij)ar(,-k) OF aq(m)
62Eb (61‘(23) 81‘(1k ) i 32Eb B (al‘ (¢k) 6r(lk) )
ar(lk)ar(u) O (ik) OT (i) "\ OF 0q(m)
0*E, (8r(1k) 8r (5) ) 4 0*E, ) (3r i) _ Ory Jk)) (169)
" B dran 5am ) Frgrdre)  \ OF © Dam
0°E, (ar(gk) B ix) ) LB (ar(zk o run )
3r(,k)3r(3k ar(]k)ar (ik) OF GQ(m)
+ 32Eb .. <8r(jk 8r(]k ):l
Or (i) Or (jk) oF aq (m)
and by definition,
OF = Ry;j), agg\k) = Ryix).- (170)

| Or(ij)
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Finally, we use a similar approach to define the first Lagrangian elasticity tensor. This is

the traditional way of estimating the elastic properties of a solid. Using the chain rule once

again gives

32W 1 32Eb 8r(z]) 81' ,]) n 82Eb 6r(zk 31‘(,_7)
3F5F 8r(m6r ,_7) 31’(1']‘)31’(,-19)
azEb (31‘(,1) 81'(,@) 4 32Eb <3r(1k) zk))
3l‘(zk Or(,]) Br(,-k)c?r(ik) 3
0’Ey (5‘ (3#) 3r<za>) L OB (ar(m r; k)) (a71)
T Or(inOr() oF
62Eb <8r(]k 6r(,k)) L 32Eb . <8r(ik 8r(]k)
3r(zk 8r(3k) 6r(jk)6r(ik) OF
+ 82Eb . (ar(jk) ® 61‘ (5k) )
Br(jk)ar(jk) - JOF OF )

The first Lagrangian elasticity tensor is used in equation (163) whose solution gives vl9, In
a perfect lattice, equation (171) provides the only atomistic material information needed to

solve the macroscopic continuum problem. The next section illustrates this by showing that

the perturbation is zero for a uniform crystal.

3.7 Example Problems
3.7.1 Example I: Perfect 1-D Atomic Lattice

To illustrate the calculation, a 1-D analytical example is presented. The Tersoff-Brenner
potential is used to represent the energetics of a 1-D single-species chain of carbon atoms.
The objective here is to solve equations (158) and (159) for v[) and demonstrate a simple

case of a perfect lattice using this method.

One atom comprises the periodic unit cell, but to account for the effects of triples, two
“fictitious” atoms are assumed to extend beyond the boundaries of the cell on each side as

illustrated in Figure 28. Periodic conditions apply at the cell boundaries. The equilibrium
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Figure 28. Unit cell of 1-D carbon chain. The atoms are labeled by identify-

ing numbers.
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lattice constant for the onedimensional chain is 7, = 1.86868A. The following two conditions

stem from the 1-D assumption,

0=,

RW <« r < RO,

(172)
(173)

This simplifies the expressions in the Appendix. The resulting Hessian for three arbitrary

collinear atoms (i, j, k) is obtained as
k) ijk k
K(U Icglz.‘l ) IC(U )
[KKGR] = | i ) i)

ijk ijk ijk
(S v

where K9 — %) and the terms are defined by

1 ' = 1" 6 2 / 2
K59 =Vi — BV, +aodVaBysy fiay + 56+ DVaBiy (aofi))

a 5 1+—1- ”
+ —;_VAB i)
K§H = —v; + BV, - v, BH%f'.
- R AT Ty VAP ) J (k)
ik a 5 Bt 142 , .0
K0 =~ 5 VaBey fon - (‘5 + DVaBy (“of(ik)) - —VAB(,J) fiiry
KR =v; — BV,

(ijk) _ Qo0
IC 2 VAB(zJ) fzk)7

1+- 27

(ijk) _ PR
Ky ((5+ 1)VAB (i) (aof(ik)) VAB(’J) Fary-
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(175)
(176)
(177)
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Upon assembly of the two unique pairs (31,12) and their associated triples (123,132) in
Figure 28, the final assembled Hessian of the global system is given by the matrix,

K K2 Kis
Kl=| Ka Ko Kz | (181)
Ksi Ks2 Kz

which is assembled through the operation,

(4,4,k)(3,9,k)

Kl= || | ] [K¥9] = Kins (182)

(m) (n)
where | | is the addition operator over all unique pair and triple combinations of (i, j, k) and
(m) and (n) are displacement degrees of freedom for each atom. In equation (182), [K] is
symmetric once again and its components are obtained in detail for the problem shown in

Figure 28 as follows,

K = K3 4 89 4+ k3, (183)
Ko = K& + K&, (184)
K1z = K& 4+ 819, (185)
Kan = K&2) 4+ K34, (186)
Koz = K&2), (187)
KCas = K52 + 319, (188)

This constitutes the stiffness matrix K in equation (159).

The next step is to calculate the right-hand side of equation (158) which is equivalent to cal-
culating D and multiplying by the global rate of the deformation gradient. Using equations
(161) and (169) the right hand side for three arbitrary collinear atoms (¢, 7, k) is obtained as
Dk
{p(z‘jk)} - Dgijk) , (189)
Déijk)
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where the components are defined by
i ” —_ 5 1+— 1 .
D§ 7*) =R(ij) (VR - BVA) + (R (ik) — R(U)) ( VAB 23)6 (ik ))
5 ’ 2 5 1+— ”
+ Ry | 50+ 1)VAB(U) (Gof (ik)) — VaB;y fan (190)

6

iik " —_ Qo Y
D™ = - Ry (Va - BV, ) - Ry (*2:“//41'3’<z'j)‘s ! <z'k)) : : (19)

19 (5 (5 4 2 6 +-— 4
D:g]k) _— R(’L_’]) < VAB(U) f(ik ) - R(zk) (2(5 + ].)VAB Z]) (aof(,ik)) 2 VAB(Z]) f(zk)) .

(192)
As earlier, the assembly operation
(i.3.k) Ny
{p}= | | {P¥¥} =Dy, (193)
(m)
yields the right-hand side of the global system given by,
D,
{D}=1{ Dy ¢, (194)
D
where the components are
D, = ng) " ng) 4 ng), (195)
D, = D) + DY, (196)
Dy = D) + DEB), (197)

Under the assumption of a 1-D perfect lattice, we have R(;;) = R(i), and consequently,
D, = 0. Then, we can satisfy the periodicity condition and the rigid body constraint by

setting ol = vl = 0. The solution is therefore,
@ 3

11 _ [ 1
UE]) Vo) —vg3]) 0. (198)

In light of equation (198), the last term in equation (163) is zero and the material properties

are obtained from the atomistic energy density solely through equation (171). This result
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shows that in a defect-free lattice, the homogenization method coincides with the conven-
tional atomistic hyperelasticity problem. The next section shows an example in which a

defect causes an inhomogeneous energy distribution leading to a situation where homoge-

nization is needed to average out the energy.

3.7.2 Example II: 1-D Atomic Lattice With Defect

Consider the problem shown in Figure 29 where the center atom is displaced by a distance
L from its original energy minimizing configuration. This displacement of the center atom
constitutes the defect. With this change, the assumption in equation (173) no longer applies

and the key stiffness matrix term in equation (183) is now

" = N ! 1+3 o

+ g(é + l)VA(mB(ll;)% (aof('13))2 + %ﬁvAuz)Bg;)%f(ul?») (199)
+ Vgtla) ~ Bus Vf;,(ls) + ao&v‘;a& B(ll_;)% f(112)
+ g(é + 1)VA(13>B(1$)% (‘lof(’w))2 + %_6‘/1403) B(llz)%f(”l?)’
and likewise, equation (195) becomes,
D; =Rqy (Vz'z'm) - 3(12>VX(12)) + (Ras) — Ra) (%EVAMB;Q)% f('lz))
+ R13) <g(5 + 1)‘/:4(12>B(11;)62 (a"f(lw))2 + a—;éVA(u)B(ll-;)%f("w)) (200)

" = " Q, 6 ' 1+1 s
~ Ras) (Vi = BusViasy) — (Ran) = Raw) <—§‘VA(13> By (12))

) 1+2 ’ 2 a05 1+1 »
- R(12) ('2'(5 + l)VAus) B(lais (aOf(lz)) + _2"VA(13)B(135s f(12)> .

where Ry = 7, — L and Rg3 = 7, + L. Then, solving equation (159) under periodic
boundary conditions gives

D
oM = évovm, M= =o. (201)
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Figure 29. Unit cell of 1-D carbon chain with periodic defect.

The v/ V0!% solution as a function of L/r, is shown in Figure 30. As expected, the solution
has symmetry about the origin and grows asymptotically larger as the size of the defect (L)
grows closer to the cut-off radii. Larger defects are avoided presently due to the non-convex
structure of the energy well associated with the Tersoff-Brenner potential. This generally
leads to unphysical discontinuities in the perturbation velocity (vl) due to discontinuous
second derivatives of the atomistic energy with respect to the defect size. This is attributable
to the construction of the empirical potential in equations (151)-(157) which is intrinsically
suited for systems where nearest neighbor atoms, even in defect regions, are within the cut-off

radius R®.

It is also noteworthy that arbitrary defect densities can be treated by appropriate modifica-
tion of the unit cell. In most cases, one can tailor the desired density by increasing the size
of the unit cell and performing the summations and the assembly of the atomistic discrete

equations over more atoms. Figure 31 illustrates this idea for the 1-D carbon chain.

Numerical experiments show that as the size of the unit cell increases, the perturbative
displacement has a sharp discontinuity at the defect. Figure 32 shows this non-local behavior
as the number of atoms increases. The problem is of a single defect in chains of increasing
size. The defect magnitude is held fixed at L/r, = 0.01. The non-local discontinuity of the
perturbative velocity qualitatively agrees with traditional displacement jumps that occur at

dislocation cores. The discontinuity indicates that the material property at the defect (%)
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Figure 30. Distribution of v/1/Vyv!% solution as a function of the defect size.

© 0 O ® 0 O O

Defect

Figure 31. Larger chain of atoms in perfect arrangement around the defect

region decreases the defect density.

is modified by the last term in equation (163), an amount proportional to (1) that serves as

a correcting force for the non-locality.

Although the primary details of the method have been demonstrated in these two examples,
the method can be extended to consider the multiscale problem shown in equation (163)
for more general cases involving self-consistent solutions with equation (159). We presently

restrict ourselves to analytical 1-D examples where the results, as in the previous examples,
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Figure 32. Distribution of ¥!1/V,v[’ along unit cell length for varying num-

ber of atoms (L/r, = 0.01).

can be reported independent of the macroscale solution vl% and reserve more complex cases

in higher dimensions for a separate numerical investigation.

3.8 Closing Remarks

Linking atomic scale physics with continuum scale phenomena is of keen interest in the study
of failure, fracture, and reliability of engineering structures. The effects that dominate the
failure at the continuum scale typically initiate and evolve from the atomic scale. Despite
numerous promising methods in the literature that are capable of linking scales up to the
micron level, structures at the meter scale and beyond have only begun to be studied. To this

end, in this part we have attempted to address this issue by exploiting the weak convergence
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properties of homogenization to devise a scheme which passes atomistic information to very

large continuum scales.

We have applied the Cauchy Born rule [12] to the atom scale by assuming that the config-
uration of atoms used to solve for the perturbation displacement is indeed the minimizing
configuration of the atomistic energy. We have not considered the method in conjunction
with a molecular dynamics routine, i.e., various strategies of minimizing the atomistic en-

ergy by quenching through artificial temperature decrease or solving Newton’s equations to

minimize the interatom forces.

For this work, the specific case of the Tersoff-Brenner type II potential was considered.
But the principles and the general equations can be extended to any potential provided the
appropriate derivatives can be obtained as in Appendix A. Typically for classical systems,

onerous tensor algebra and calculus are required.

The aim of this part was to develop an approach by which atomistic physics can be em-
bedded into a continuum formulation for large scale systems. This goal has been achieved
by formulating a consistent set of equations involving a classical atomistic potential at the
fine scale and general finite strain and deformation elasticity at the coarse scale. Simple 1-D
analytical results were shown to illustrate the approach and its features. More realistic mul-

tiaxial problems in two and three dimensions for more detailed validation are the subjects

of ongoing work.
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Appendix A. Derivatives of the

Tersoff-Brenner Potential

The derivatives needed to form the Euler-Lagrange equations and the Hessian are shown

here in detail. To simplify the notation, we define the following expressions,

) = [Ta) s (A-1)
/ _ 6f(zj) " _ 32f(,_7)
fan(r) =5, T = o, (A-2)

Note that although the equations are written in component form with respect to atoms, it
is still in dyadic notation due to the multi-axial components of r(;;). That is r(;) - €; is the
component of the vector originating at atom ¢ and terminating at atom j in the direction
of ey, r(;; - e is the component in the direction of e;, etc. Referring to equations in this

report, (151)—( 157), the derivatives in equation (165) are defined by
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for (mn) = (35), (ik) when « = (ijk) and (mn) = (ij), (jk) when v = (j1k). The angles f;x)

and 6(;ix), shown in Figure A-1, are the angles subtending the connecting lines at the atoms

i and j, respectively. Note that r(;) = —r(;). The following identities can also be shown:
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It is important to note that
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Figure A-1. Angles and interatom vectors.

where I is the 3 x 3 identity tensor for a system in a 3-D domain. The derivative with respect
to r;x) can be obtained likewise. This indicates that the summations in equations (A-3),
(A-4), (A-8), and (A-9), when multiplied by equation (A-17) in equation (165) are nontrivial

if and only if m is equal to ¢, j, or k.

For the Hessian in equation (166), the differential terms are defined by,
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To complete the derivation, the following identities are needed,

G _ [ —8a,ci(1 + cosb,)? 2a,¢? dcos b, % dcos 97>
O mm)O(pg)  \(dZ+ (1+cos6,)%)°  (df+(1+c0s6,)%)% ) \ Oty — OF(mn)
2 2
2a,c2(1+cosf,)  0°coséb, (A-38)

(d?, + (1 -+ Cos 9-7)2)2 ar(mn)ar(pq) ’

with the appropriate combinations of (mn, pq) = (ij,%7), (¢, ik), (tk,%7), (ik, 1k) for v = 15k
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o _ ik, and,
and (mn, pg) = (i, jk), (7%, 1j), (7k, jk) for v = ji
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This completes the closed-form derivation of the Hessian for the Tersoff-Brenner!? potential.

Despite the relative algebraic complexity of the expressions, the calculations can be per-
formed readily using computers. The algorithm is based on an additive assembly process
by casting the equations in their equivalent matrix forms and then summing over all unique

pairs and triples of atoms, which translates well to an iterative computational methodology.

1Tersoff, J. “Empirical Interatomic Potential for Carbon, With Applications to Amorphous Carbon.”
Physical Review Letters, vol. 61, no. 25, pp. 2879-2882, 19 December 1988.

2Brenner, D. W. “Empirical Potential for Hydrocarbons for Use in Simulating Chemical Vapor Deposition

of Diamond Films.” Physical Review B, vol. 42, no. 15, pp. 9458-9471, 15 November 1990.
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